

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

IP4786CZ32

DVI and HDMI interface ESD and overcurrent protection, DDC/CEC buffering, hot plug detect and backdrive protection

Rev. 5 — 24 June 2014

Product data sheet

1. Product profile

1.1 General description

The IP4786CZ32 is designed to protect High-Definition Multimedia Interface (HDMI) transmitter host interfaces. It includes HDMI 5 V overcurrent / overvoltage protection, Display Data Channel (DDC) buffering and decoupling, hot plug detect, backdrive protection, Consumer Electronic Control (CEC) buffering and decoupling, and ±12 kV contact ElectroStatic Discharge (ESD) protection for all I/Os, exceeding the IEC 61000-4-2 level 4 standard.

The IP4786CZ32 incorporates Transmission Line Clamping (TLC) technology on the high-speed Transition Minimized Differential Signaling (TMDS) lines to simplify routing and help reduce impedance discontinuities. All TMDS lines are protected by an impedance-matched diode configuration that minimizes impedance discontinuities caused by typical shunt diodes.

The enhanced 60 mA overcurrent / overvoltage linear regulator guarantees HDMI-compliant 5 V output voltage levels with up to 6.5 V inputs.

The DDC lines use a new buffering concept which decouples the internal capacitive load from the external capacitive load for use with standard Complementary Metal Oxide Semiconductor (CMOS) or Low Voltage Transistor-Transistor Logic (LVTTL) I/O cells down to 1.8 V. This buffering also redrives the DDC and CEC signals, allowing the use of longer or cheaper HDMI cables with a higher capacitance. The internal hot plug detect module simplifies the application of the HDMI transmitter to control the hot plug signal.

All lines provide appropriate integrated pull-ups and pull-downs for HDMI compliance and backdrive protection to guarantee that HDMI interface signals are not pulled down if the system is powered down or enters Standby mode. Only a single external capacitor is required for operation.

1.2 Features and benefits

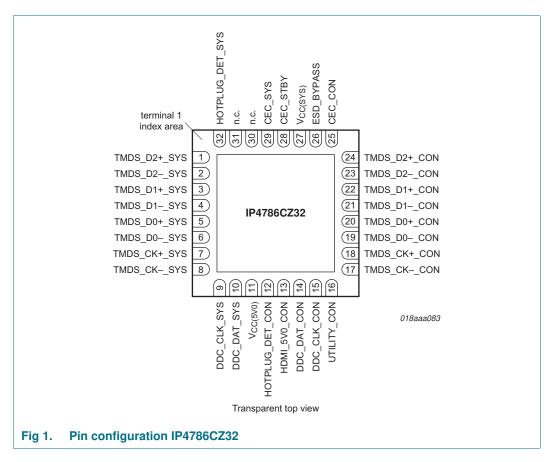
- HDMI 2.0 and all backward compatible standards are supported
- 6.0 Gbps TMDS Bit Rate (600 Mcsc TMDS Character Rate) compatible
- Supports UHD 4k (2160p) 60 Hz display modes
- Impedance matched 100 Ω differential transmission line ESD protection for TMDS lines ($\pm 10~\Omega$). No Printed-Circuit Board (PCB) pre-compensation required
- Simplified flow-through routing utilizing less overall PCB space
- DDC capacitive decoupling between system side and HDMI connector side and buffering to drive cable with high capacitive load (> 700 pF/25 m)

All external I/O lines with ESD protection of at least ±12 kV, exceeding the

DVI and HDMI interface ESD and overcurrent protection

Hot plug detect module

IEC 61000-4-2, level 4 standard


- CEC buffering and isolation, with integrated backdrive-protected 26 kΩ pull-up
- Robust ESD protection without degradation after repeated ESD strikes
- Highest integration in a small footprint, PCB level, optimized RF routing,
 32-pin HVQFN leadless package

1.3 Applications

- The IP4786CZ32 can be used for a wide range of HDMI source devices, consumer and computing electronics:
 - ◆ Standard-Definition (SD) and High-Definition (HD) DVD player
 - Set-top box
 - PC graphic card
 - Game console
 - ◆ HDMI picture performance quality enhancer module
 - Digital Visual Interface (DVI)

2. Pinning information

2.1 Pinning

IP4786CZ32

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved

DVI and HDMI interface ESD and overcurrent protection

2.2 Pin description

Table 1. Pin description

Pin	Name	Description
1	TMDS_D2+_SYS	TMDS to ASIC inside system
2	TMDS_D2SYS	TMDS to ASIC inside system
3	TMDS_D1+_SYS	TMDS to ASIC inside system
4	TMDS_D1SYS	TMDS to ASIC inside system
5	TMDS_D0+_SYS	TMDS to ASIC inside system
6	TMDS_D0SYS	TMDS to ASIC inside system
7	TMDS_CK+_SYS	TMDS to ASIC inside system
8	TMDS_CKSYS	TMDS to ASIC inside system
9	DDC_CLK_SYS	DDC clock system side
10	DDC_DAT_SYS	DDC data system side
11	V _{CC(5V0)}	5 V supply input
12	HOTPLUG_DET_CON	hot plug detect connector side
13	HDMI_5V0_CON	5 V overcurrent out to connector
14	DDC_DAT_CON	DDC data connector side
15	DDC_CLK_CON	DDC clock connector side
16	UTILITY_CON	utility line ESD protection
17	TMDS_CKCON	TMDS ESD protection to connector
18	TMDS_CK+_CON	TMDS ESD protection to connector
19	TMDS_D0CON	TMDS ESD protection to connector
20	TMDS_D0+_CON	TMDS ESD protection to connector
21	TMDS_D1CON	TMDS ESD protection to connector
22	TMDS_D1+_CON	TMDS ESD protection to connector
23	TMDS_D2CON	TMDS ESD protection to connector
24	TMDS_D2+_CON	TMDS ESD protection to connector
25	CEC_CON	CEC signal connector side
26	ESD_BYPASS	ESD bias voltage
27	V _{CC(SYS)}	supply voltage for level shifting
28	CEC_STBY	CEC Standby mode control (LOW for lowest power, CEC-only mode)
29	CEC_SYS	CEC I/O signal system side
30	n.c.	not connected
31	n.c.	not connected
32	HOTPLUG_DET_SYS	hot plug detect system side
ground pad	GND	ground

DVI and HDMI interface ESD and overcurrent protection

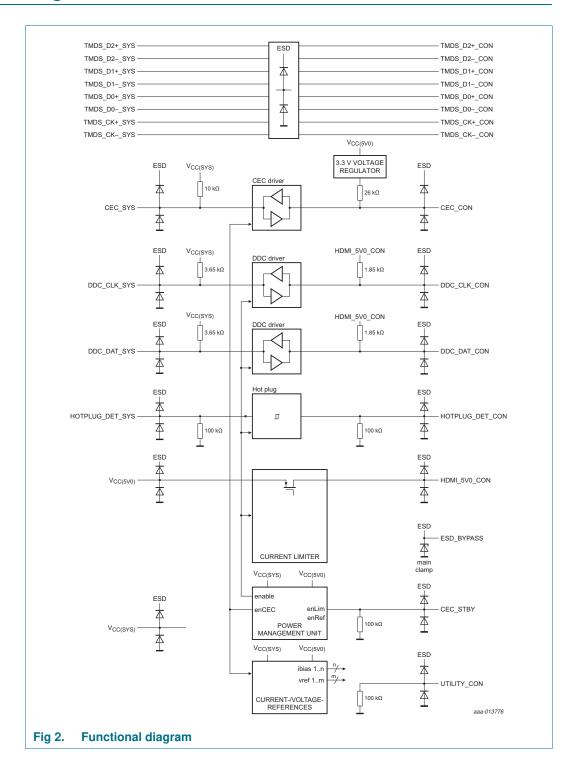

3. Ordering information

Table 2. Ordering information

Type number	Package						
	Name	Description V					
IP4786CZ32	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $5\times5\times0.85$ mm	SOT617-3				

DVI and HDMI interface ESD and overcurrent protection

4. Functional diagram

DVI and HDMI interface ESD and overcurrent protection

5. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(5V0)}	supply voltage (5.0 V)		GND - 0.5	6.5	V
VI	input voltage	I/O pins	GND - 0.5	5.5	V
V _{ESD}	electrostatic discharge	IEC 61000-4-2, level 4 (contact) [1]	-	±12	kV
V _{CC(5V0)} sup V _I inp V _{ESD} ele	voltage	IEC 61000-4-2, level 1 (contact) [2]	-	±2	kV
P _{tot}	total power dissipation	DDC operating at 100 kHz; CEC operating at 1 kHz; 50 % duty cycle; CEC_STBY = HIGH; no current at HDMI_5V0_CON	-	50	mW
		DDC and CEC bus in idle mode; CEC_STBY = HIGH; no current at HDMI_5V0_CON	-	3.0	mW
		DDC and CEC bus in idle mode; CEC_STBY = LOW	-	1.0	mW
T _{amb}	ambient temperature		-25	+85	°C
T _{stg}	storage temperature		-55	+125	°C

^[1] Connector-side pins (typically denoted with "_CON" suffix) to ground.

^[2] System-side pins: CEC_SYS, DDC_DAT_SYS, DDC_CLK_SYS, HOTPLUG_DET_SYS, CEC_STBY, V_{CC(SYS)} and V_{CC(5V0)}.

DVI and HDMI interface ESD and overcurrent protection

6. Static characteristics

Table 4. Supplies

 $T_{amb} = -25$ °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC(5V0)}	supply voltage (5.0 V)	[1]	4.5	5.0	6.5	V
V _{CC(SYS)}	system supply voltage		1.62	3.3	5.5	V

^[1] The IP4786CZ32 contains a 5 V voltage regulator function for higher input voltages. Any input voltage of 4.925 V < V_{CC(5V0)} < 6.50 V will provide HDMI-compliant output levels of 4.8 V to 5.3 V on HDMI_5V0_CON.

Table 5. TMDS protection circuit

 $T_{amb} = -25$ °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TMDS chan	nel						
$Z_{i(dif)}$	differential input impedance	TDR measured; t _r = 200 ps		90	100	110	Ω
C _{eff}	effective capacitance	equivalent shunt capacitance for TDR minimum; $t_r = 200 \text{ ps}$		-	0.6	-	pF
Protection of	diode				'		
V_{BRzd}	Zener diode breakdown voltage	I = 1.0 mA		6.0	-	9.0	V
r _{dyn}	dynamic resistance	surge; I = 1.0 A; IEC 61000-4-5/9					
		positive transient		-	1.0	-	Ω
		negative transient		-	1.0	-	Ω
		TLP					
		positive transient	[3]	-	1.0	-	Ω
		negative transient	[3]	-	1.0	-	Ω
I _{bck}	back current	$V_{CC(5V0)} < V_{ch(TMDS)}$	[4][5]	-	0.1	1.0	μА
I _{LR}	reverse leakage current	$V_1 = 3.0 \text{ V}$		-	1.0	-	μΑ
V _F	forward voltage			-	0.7	-	V
V _{CL(ch)trt(pos)}	positive transient channel clamping voltage	100 ns TLP; 50 Ω pulser at 50 ns		-	8.0	-	V

- [1] This parameter is guaranteed by design.
- [2] Capacitive dip at HDMI Time Domain Reflectometer (TDR) measurement conditions.
- [3] ANSI-ESDSP5.5.1-2004, ESD sensitivity testing Transmission Line Pulse (TLP) component level method 50 TDR.
- [4] Signal pins:
 - TMDS_D0+_CON, TMDS_D0-_CON, TMDS_D1+_CON, TMDS_D1-_CON, TMDS_D2+_CON, TMDS_D2-_CON, TMDS_CK+_CON, TMDS_CK-_CON, TMDS_D0+_SYS, TMDS_D0-_SYS, TMDS_D1+_SYS, TMDS_D1-_SYS, TMDS_D2+_SYS, TMDS_D2-_SYS, TMDS_CK+_SYS and TMDS_CK-_SYS.
- [5] Backdrive current from TMDS_x_SYS and TMDS_x_CON pins to local V_{CC(5V0)} bias rail at power-down. Device does not block backdrive current leakage through the device to/from ASIC I/O pins connected to TMDS_x_SYS pins.

DVI and HDMI interface ESD and overcurrent protection

Table 6. HDMI_5V0_CON

 T_{amb} = -25 °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
r _{dyn}	dynamic resistance	TLP					
		positive transient	<u>[1]</u>	-	1.0	-	Ω
		negative transient	<u>[1]</u>	-	1.0	-	Ω
V _{CL}	clamping voltage	100 ns TLP; 50 Ω pulser at 50 ns		-	8	-	V
I _{O(max)}	maximum output current	V _(HDMI_5V0_CON) = 4.8 V		55	-	-	mA
I _{bck}	back current	$V_{CC(5V0)} < V_{(HDMI_5V0_CON)}$		-	-	10	μА
I _{O(sc)}	short-circuit output current	$V_{(HDMI_5V0_CON)} = 0 V$		-	125	175	mA
V_{do}	dropout voltage	4.5 V < V _{CC(5V0)} < 4.925 V; DDC = LOW	[2]				
		I _O = 10 mA		-	70	-	mV
		I _O = 55 mA		-	-	125	mV
V _{O(LDO)}	LDO output voltage	$I_{O} \le 55$ mA; 4.925 V < $V_{CC(5V0)} < 6.5$ V; DDC = LOW	[2]	4.8	5.05	5.3	V

^[1] ANSI-ESDSP5.5.1-2004, ESD sensitivity testing TLP component level method 50 TDR.

Table 7. UTILITY_CON

 $T_{amb} = -25$ °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supplies:	pins V _{CC(5V0)} and V _{CC(SYS)}						
r _{dyn}	dynamic resistance	TLP					
		positive transient	[1]	-	1.0	-	Ω
		negative transient	[1]	-	1.0	-	Ω
V _{CL}	clamping voltage	100 ns TLP; 50 Ω pulser at 50 ns		-	8.0	-	V
C _i	input capacitance	$\begin{split} &V_{CC(5V0)} = 0 \text{ V;} \\ &V_{CC(SYS)} = 0 \text{ V; } V_{bias} = 2.5 \text{ V;} \\ &AC \text{ input } = 3.5 \text{ V}_{(p\text{-}p)}; \\ &f = 100 \text{ kHz} \end{split}$		-	8.0	10	pF
R _{pd}	pull-down resistance			60	100	140	kΩ

^[1] ANSI-ESDSP5.5.1-2004, ESD sensitivity testing TLP component level method 50 TDR.

^[2] The IP4786CZ32 contains a 5 V voltage regulator function for higher input voltages. Any input voltage of 4.925 V < V_{CC(5V0)} < 6.50 V will provide HDMI-compliant output levels of 4.8 V to 5.3 V on HDMI_5V0_CON.

DVI and HDMI interface ESD and overcurrent protection

Table 8. Static characteristics

 T_{amb} = -25 °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DDC buff	er on connector side[1]					
V _{IH}	HIGH-level input voltage		$\begin{matrix} 0.5 \times \\ V_{(HDMI_5V0_CON)} \end{matrix}$	-	6.5	V
V _{IL}	LOW-level input voltage		-0.5	-	$\begin{array}{c} 0.3 \times \\ V_{(HDMI_5V0_CON)} \end{array}$	V
V _{OH}	HIGH-level output voltage	[2]	V _(HDMI_5V0_CON) - 0.02	-	V _(HDMI_5V0_CON) + 0.02	V
V _{OL}	LOW-level output voltage	internal pull-up and external sink	-	100	200	mV
V _{IK}	input clamping voltage	$I_I = -18 \text{ mA}$	-	-	-1.0	٧
C _{IO}	input/output capacitance	$V_{CC(5V0)} = 5.0 \text{ V};$ [2]3] $V_{CC(5YS)} = 3.3 \text{ V};$ CEC_STBY = HIGH	-	8.0	10	pF
R _{pu}	pull-up resistance		1.6	1.8	2.0	kΩ
DDC buff	er on system side[1][4]					
V _{IH} I	HIGH-level input voltage	$V_{CC(SYS)} = 1.8 \text{ V}$	450	-	-	mV
		V _{CC(SYS)} = 2.5 V	620	-	-	mV
		$V_{CC(SYS)} = 3.3 \text{ V}$	760	-	-	mV
		$V_{CC(SYS)} = 5.0 \text{ V}$	800	-	-	mV
V_{IL}	LOW-level input voltage	$V_{CC(SYS)} = 1.8 \text{ V}$	-	-	330	mV
		V _{CC(SYS)} = 2.5 V	-	-	380	mV
		$V_{CC(SYS)} = 3.3 \text{ V}$	-	-	400	mV
		$V_{CC(SYS)} = 5.0 \text{ V}$	-	-	420	mV
V _{OH}	HIGH-level output voltage	[2]	$V_{\text{CC(SYS)}} - 0.02$	-	V _{CC(SYS)} + 0.02	V
V _{OL}	LOW-level output voltage	$V_{CC(SYS)} = 1.8 \text{ V}$ [5]	-	490	500	mV
		$V_{CC(SYS)} = 2.5 \text{ V}$ [5]	-	640	690	mV
		$V_{CC(SYS)} = 3.3 \text{ V}$ [5]	-	685	790	mV
		$V_{CC(SYS)} = 5.0 \text{ V}$ [5]	-	720	820	mV
V_{IK}	input clamping voltage	$I_I = -18 \text{ mA}$	-	-	-1.0	٧
C _{IO}	input/output capacitance	$\begin{split} &V_{CC(5V0)} = 0 \text{ V;} \\ &V_{CC(SYS)} = 0 \text{ V;} \\ &V_{bias} = 2.5 \text{ V;} \\ &AC \text{ input} = 3.5 \text{ V}_{(p-p)}; \\ &f = 100 \text{ kHz} \end{split}$	-	6.0	8.0	pF
R _{pu}	pull-up resistance		3.2	3.65	4.1	kΩ

DVI and HDMI interface ESD and overcurrent protection

Table 8. Static characteristics ... continued $T_{amb} = -25$ °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
CEC_CO	V[1]						
V _{IH}	HIGH-level input voltage			2.0	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.80	V
V _{OH}	HIGH-level output voltage			2.88	3.3	3.63	V
V _{OL}	LOW-level output voltage	I _{OL} = 1.5 mA		-	100	200	mV
C _{IO}	input/output capacitance	$\begin{split} &V_{CC(5V0)} = 0 \text{ V;} \\ &V_{CC(SYS)} = 0 \text{ V;} \\ &V_{bias} = 1.65 \text{ V;} \\ &AC \text{ input} = 2.5 \text{ V}_{(p-p)}; \\ &f = 100 \text{ kHz} \end{split}$	[2]	-	8.0	10	pF
R _{pu}	pull-up resistance			23.4	26.0	28.6	kΩ
I _{leak(CEC)}	CEC leakage current	$V_{CC(5V0)} = 0 \text{ V};$ $V_{CC(SYS)} = 0 \text{ V};$ CEC_CON connected to 3.63 V via 27 k Ω		-	-	0.1	μА
CEC_SYS	<u>[1][4]</u>				•	*	-
V _{IH}	HIGH-level input voltage	$V_{CC(SYS)} = 1.8 \text{ V}$		450	-	-	mV
		V _{CC(SYS)} = 2.5 V		620	-	-	mV
		$V_{CC(SYS)} = 3.3 \text{ V}$		760	-	-	mV
		$V_{CC(SYS)} = 5.0 \text{ V}$		800	-	-	mV
V_{IL}	LOW-level input voltage	V _{CC(SYS)} = 1.8 V		-	-	330	mV
		V _{CC(SYS)} = 2.5 V		-	-	380	mV
		$V_{CC(SYS)} = 3.3 \text{ V}$		-	-	400	mV
		$V_{CC(SYS)} = 5.0 \text{ V}$		-	-	420	mV
V _{OH}	HIGH-level output voltage		[2]	$V_{CC(SYS)} - 0.02$	-	$V_{CC(SYS)} + 0.02$	V
V_{OL}	LOW-level output voltage	$V_{CC(SYS)} = 1.8 \text{ V}$	[5]	-	490	500	mV
		$V_{CC(SYS)} = 2.5 \text{ V}$	[5]	-	640	690	mV
		$V_{CC(SYS)} = 3.3 \text{ V}$	[5]	-	675	770	mV
		$V_{CC(SYS)} = 5.0 \text{ V}$	[5]	-	710	800	mV
C _{IO}	input/output capacitance	$\begin{split} &V_{CC(5V0)} = 0 \text{ V;} \\ &V_{CC(SYS)} = 0 \text{ V;} \\ &V_{bias} = 1.65 \text{ V;} \\ &AC \text{ input} = 2.5 \text{ V}_{(p-p)}; \\ &f = 100 \text{ kHz} \end{split}$	[2]	-	6.0	7.0	pF
R _{pu}	pull-up resistance			8.5	10	11.5	kΩ
HOTPLU	G_DET_CON[1]				•		•
V _{IH}	HIGH-level input voltage			2.0	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.8	V
R _{pd}	pull-down resistance			60	100	140	kΩ
C _i	input capacitance	$\begin{split} &V_{CC(5V0)} = 0 \text{ V;} \\ &V_{CC(SYS)} = 0 \text{ V;} \\ &V_{bias} = 2.5 \text{ V;} \\ &AC \text{ input} = 3.5 \text{ V}_{(p-p)}; \\ &f = 100 \text{ kHz} \end{split}$	[2]	-	8.0	10	pF

DVI and HDMI interface ESD and overcurrent protection

 Table 8.
 Static characteristics ...continued

 T_{amb} = -25 °C to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
HOTPLUG	DET_SYS[1]					
V _{OH}	HIGH-level output voltage	I _{OL} = 1 mA	$0.7 \times V_{CC(SYS)}$	-	-	٧
V _{OL}	LOW-level output voltage	$I_{OL} = -1 \text{ mA}$	-	200	300	mV
R _{pd}	pull-down resistance		60	100	140	kΩ

- [1] The device is active if the input voltage at pin CEC_STBY is above the HIGH level.
- [2] This parameter is guaranteed by design.
- [3] Capacitive load measured at power-on.
- [4] No external pull-up resistor attached.
- [5] Typical value at $T_{amb} = +25$ °C.

Table 9. CEC_STBY power management circuit

 $V_{CC(SYS)} = 1.62 \text{ V}$ to 5.5 V; $V_{CC(5V0)} = 4.5 \text{ V}$ to 6.5 V; GND = 0 V; $T_{amb} = -25 \text{ °C}$ to +85 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Board side:	input pin CEC_STBY[1]					·	·
V _{IH}	HIGH-level input voltage	HIGH = active	[2]	1.2	-	6.5	V
V _{IL}	LOW-level input voltage	LOW = standby	[3]	-0.5	-	0.8	V
R _{pd}	pull-down resistance			60	100	140	kΩ
C _i	input capacitance	$V_I = 3 V \text{ or } 0 V$		-	6	7	рF

- [1] The CEC_STBY pin should be connected permanently to V_{CC(5V0)} or V_{CC(SYS)} if no enable control is needed.
- [2] DDC buffers, Hot Plug Detect (HPD) buffer, and HDMI_5V0_CON out enabled; CEC buffer enabled.
- [3] DDC buffers, HPD buffer, and HDMI_5V0_CON out disabled; CEC buffer enabled.

DVI and HDMI interface ESD and overcurrent protection

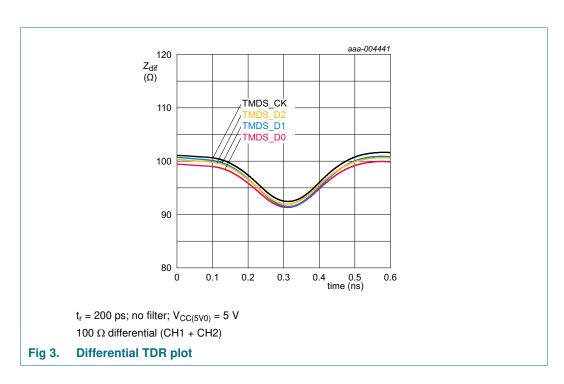
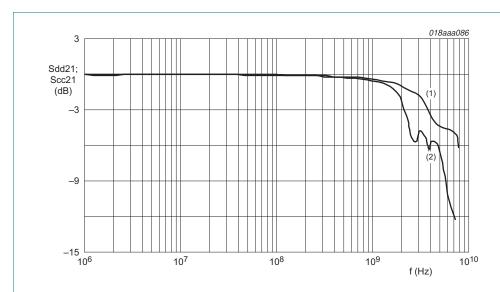
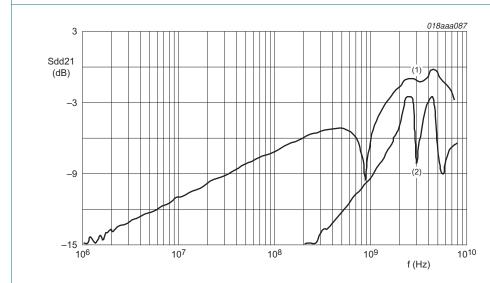

7. Dynamic characteristics

Table 10. Dynamic characteristics


 $V_{CC(5V0)} = 5.0 \text{ V}$; $V_{CC(SYS)} = 1.8 \text{ V}$; GND = 0 V; $T_{amb} = -25 \text{ °C to } +85 \text{ °C unless otherwise specified}$.

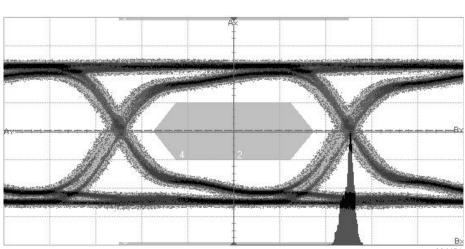
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DDC_DAT_	SYS, DDC_CLK_SYS, DDC_DAT_C	CON, DDC_CLK_CON[1]				
t _{PLH}	LOW to HIGH propagation delay	system side to connector side Figure 16	-	80	-	ns
t _{PHL}	HIGH to LOW propagation delay	system side to connector side Figure 16	-	60	-	ns
t _{PLH}	LOW to HIGH propagation delay	connector side to system side Figure 17	-	120	-	ns
t _{PHL}	HIGH to LOW propagation delay	connector side to system side Figure 17	-	80	-	ns
t _{TLH}	LOW to HIGH transition time	connector side Figure 18	-	150	-	ns
t _{THL}	HIGH to LOW transition time	connector side Figure 18	-	100	-	ns
t _{TLH}	LOW to HIGH transition time	system side Figure 19	-	250	-	ns
t _{THL}	HIGH to LOW transition time	system side Figure 19	-	80	-	ns

[1] All dynamic measurements are done with a 75 pF load. Rise times are determined by internal pull-up resistors.


DVI and HDMI interface ESD and overcurrent protection

- (1) Sdd21
- (2) Scc21

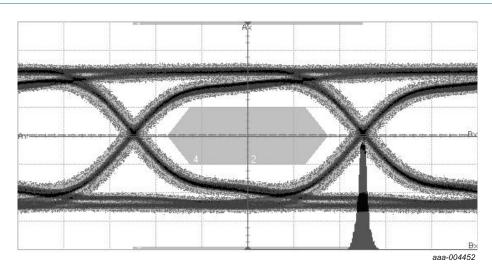
Normalized to 100 Ω ; differential pairs at signal pins.


Fig 4. Mixed-mode differential and common-mode insertion loss; typical values

- (1) Sdd21; Near End Crosstalk (NEXT)
- (2) Sdd21; Far End Crosstalk (FEXT) normalized to 100 Ω ; differential pairs CH1/CH2 versus CH3/CH4

Fig 5. Mixed-mode differential and common-mode NEXT / FEXT; typical values

DVI and HDMI interface ESD and overcurrent protection

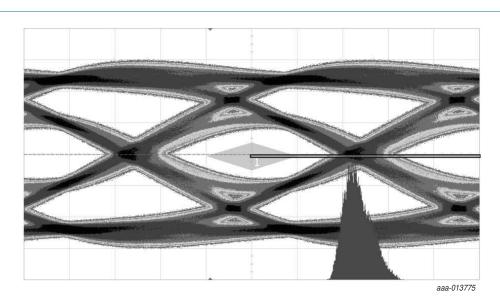


aaa-004451

227 MHz pixel clock Horizontal scale: 90 ps/div Vertical scale: 200 mV/div

Offset: 42.6 mV

Fig 6. Eye diagram using IP4786CZ32 (1080p, 12 bit)

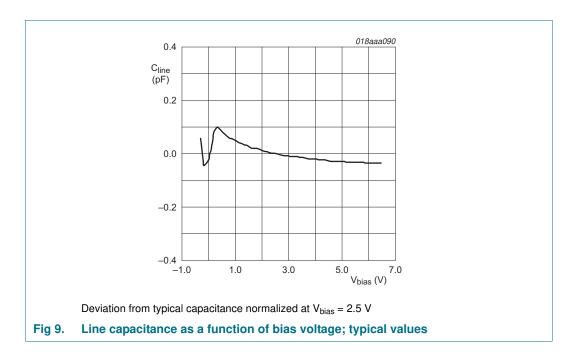

297 MHz pixel clock

Horizontal scale: 67.5 ps/div Vertical scale: 200 mV/div

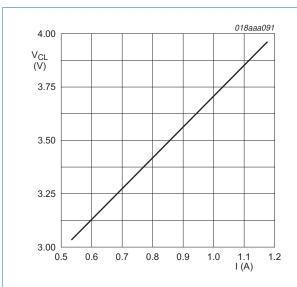
Offset: 42.6 mV

Fig 7. Eye diagram using IP4786CZ32 (1080p, 16 bit)

DVI and HDMI interface ESD and overcurrent protection


148.5 MHz test frequency Horizontal scale: 53.8 ps/div

Vertical scale: 200 mV/div


Measured at TP2 with worst cable emulator, reference cable equalizer and

worst case negative skew

Fig 8. Eye diagram using IP4786CZ32 (2160p, 60 Hz)



DVI and HDMI interface ESD and overcurrent protection

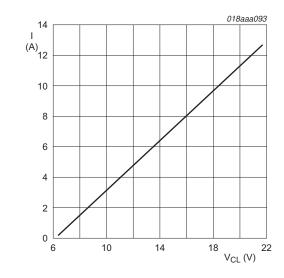

IEC 61000-4-5; t_p = 8/20 μ s; positive pulse

Fig 10. Dynamic resistance with positive clamping

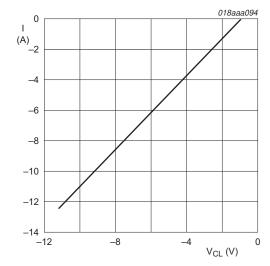
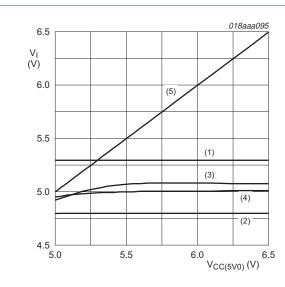
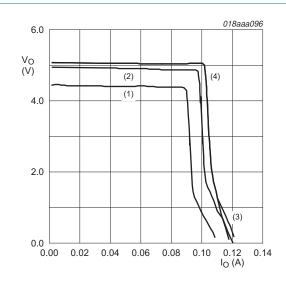

IEC 61000-4-5; $t_p = 8/20 \mu s$; negative pulse

Fig 11. Dynamic resistance with negative clamping

t_p = 100 ns; TLP; signal pins; typical values


Fig 12. Dynamic resistance with positive clamping

 $t_p = 100 \text{ ns}$; TLP; signal pins; typical values


Fig 13. Dynamic resistance with negative clamping

DVI and HDMI interface ESD and overcurrent protection

- (1) 5.3 V; maximum values; HDMI CTS TID 7-11
- (2) 4.8 V; minimum values; HDMI CTS TID 7-11
- (3) I = 0 mA
- (4) I = 55 mA
- (5) $V_{CC(5V0)}$ supply input; 4.925 V to 6.5 V

Fig 14. Overvoltage limiter function (HDMI_5V0_CON)

- (1) $V_{CC(5V0)} = 4.5 \text{ V}$
- (2) $V_{CC(5V0)} = 5.0 \text{ V}$
- (3) $V_{CC(5V0)} = 5.5 \text{ V}$
- (4) $V_{CC(5V0)} = 6.5 \text{ V}$

Fig 15. Overcurrent limiter function (HDMI_5V0_CON)

DVI and HDMI interface ESD and overcurrent protection

8. AC waveforms

8.1 DDC propagation delay

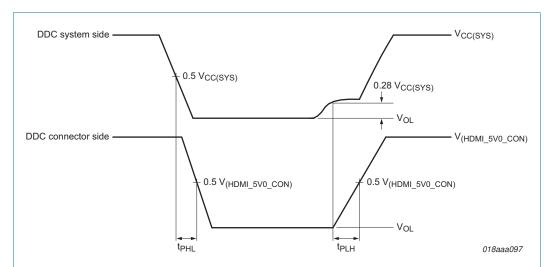


Fig 16. Propagation delay DDC, DDC system side to DDC connector side

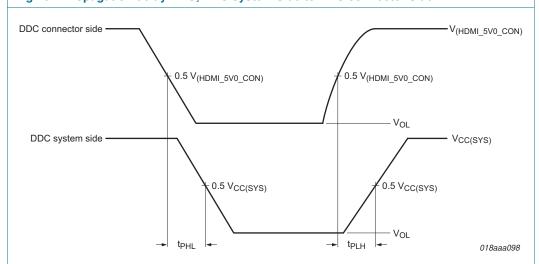


Fig 17. Propagation delay DDC, DDC connector side to DDC system side

DVI and HDMI interface ESD and overcurrent protection

 t_{PLH}

8.2 DDC transition time

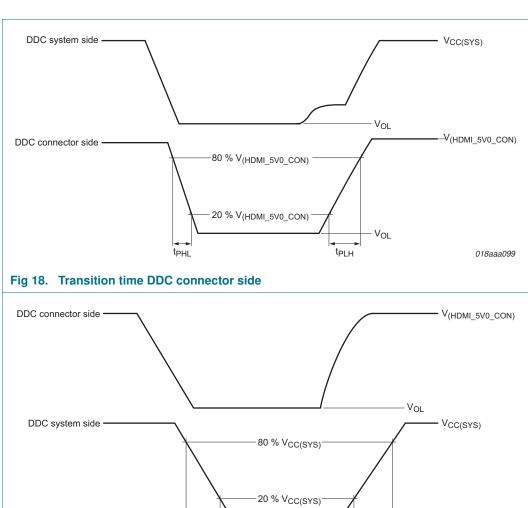
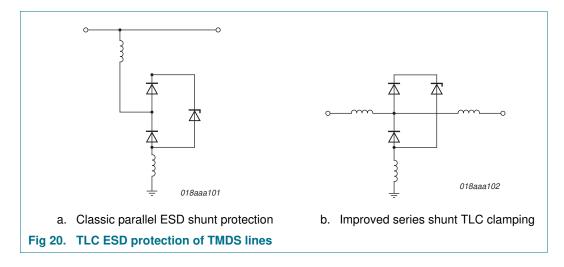


Fig 19. Transition time DDC system side

t_{PHL}

018aaa100

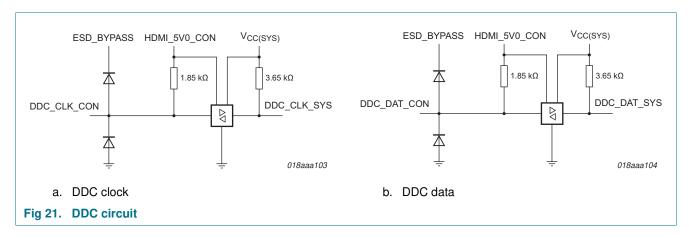

DVI and HDMI interface ESD and overcurrent protection

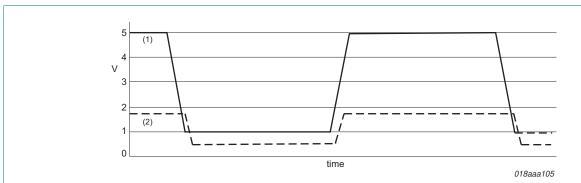
9. Application information

9.1 TMDS ESD

To protect the TMDS lines and also to comply with the impedance requirements of the HDMI specification, the IP4786CZ32 provides ESD protection with matched TLC ESD structures. Typical Dual Rail Clamp (DRC) or rail-to-rail shunt structures are common for low-capacitance ESD protection (as shown on the left side of Figure 20) where the dominant factor for the TMDS line impedance dip is determined by the capacitive load to ground. Parasitic lead inductances of the packaging in this case works against the ESD clamping performance by including the $\Delta I/\Delta t$ reactance of the inductance into the path of the ESD shunt.

The IP4786CZ32 utilizes these inherent inductances in series with the transmission line in order to present an effective capacitive load of roughly only 0.7 pF. This TLC structure minimizes the capacitive dip, for ideal signal integrity (Figure 20; right side) without complicated PCB pre-compensation. As a beneficial side effect, this enhances the ESD performance of the device as well, since the reactance of the series inductance attenuates the fast initial peak of the ESD pulse, for a lower residual pulse delivered to the Application Specific Integrated Circuit (ASIC).



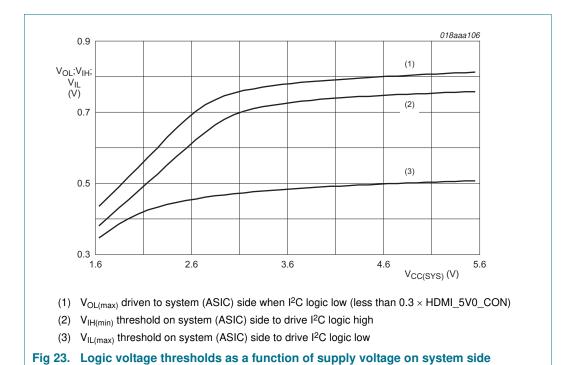

DVI and HDMI interface ESD and overcurrent protection

9.2 DDC circuit

The DDC bus circuit integrates all required pull-ups, and provides full capacitive decoupling between the HDMI connector and the DDC bus lines on the PCB. The capacitive decoupling ensures that the maximum capacitive load is well within the 50 pF maximum of the HDMI specification. No external pull-ups or pull-downs are required.

The bidirectional buffers support high-capacitive load on the HDMI cable-side. Various non-compliant but prevalent low-cost cables have been observed with a capacitive load of up to 6 nF on the DDC lines, far exceeding the 700 pF HDMI limit. The IP4786CZ32 can easily decouple this from the weaker ASIC I/O buffers, and drive the rogue cable successfully.

- (1) Valid I^2C signaling example on the cable (connector side) from 5 V (HIGH) to approximately 1 V (LOW).
- (2) Valid logic-level signaling example to the ASIC (system side) from 1.8 V (HIGH) to approximately 0.5 V (LOW).

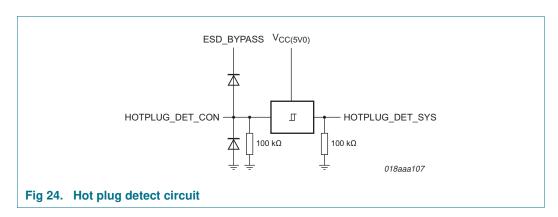

Fig 22. DDC level shifting waveform example

DVI and HDMI interface ESD and overcurrent protection

9.3 Logic low I²C voltage shifter

The DDC buffers provide an additional feature commonly required for high-integration HDMI ASICs which are limited to CMOS or LVTTL LOW-level input voltage (V_{IL}) on their available I/O buffer cells. These I/Os are not strictly compliant with the 0.3 V_{DD} threshold voltage levels of I²C and may miss intended logic low levels on the cable between 0.8 V and 1.5 V (typical values).

This feature is also included in the CEC buffer, and thus allows standard I/O buffer cells to be used in ASICs and microcontrollers.


DVI and HDMI interface ESD and overcurrent protection

9.4 Hot plug detect circuit and HEAC support

The IP4786CZ32 includes a hot plug detect circuit that simplifies the hot plug application. The circuit generates a standard logic level from the hot plug signal.

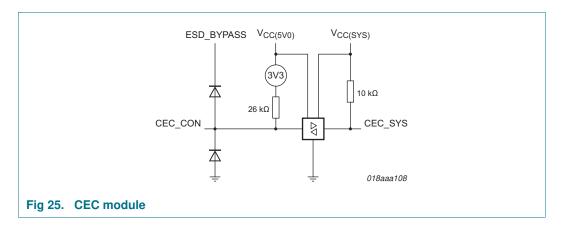
The hot plug detect circuit is pulling down the signal to avoid any floating signal. The comparator guarantees a save detection of the 2 V hot plug signal without any glitches or oscillation at the hot plug output.

The IP4786CZ32 also provides an additional ESD pin to protect the reserved / HEAC pin along with hot plug detect to 12 kV, exceeding IEC 61000-4-2 level 4.

9.5 CEC

The logical multidrop topology of the CEC bus can include complex physical stubs, loading cables, and interconnects that may deteriorate signal quality. The IP4786CZ32 includes a full bidirectional buffer to drive the CEC bus and isolate the CEC microcontroller or ASIC General-Purpose Input/Output (GPIO).

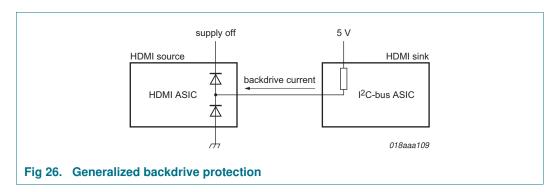
The CEC buffer derives power from an on-board 3.3 V regulator from the $V_{CC(5V0)}$ domain (see <u>Figure 25</u>). This allows extensive system power management configurations and guarantees an HDMI-compliant $V_{(CEC_CON)}$ on the connector, as well as the backdrive-protected 125 μ A nominal CEC pull-up which does not degrade the bus when powered down.


By placing the CEC microcontroller and $V_{CC(5V0)}$ input on a 5 V rail as shown in <u>Figure 28</u>, the CEC microcontroller can communicate over CEC for power commands, and then enable the HDMI port via the CEC_STBY pin, as well as the rest of the system as needed.

If IP4786CZ32 Standby modes are not required, or if the Power-down modes are not desired, the CEC_STBY pin can be pulled HIGH to $V_{\text{CC}(5V0)}$ or $V_{\text{CC}(SYS)}$ for continuous HDMI and CEC operation.

Strapping the CEC_STBY = $V_{CC(SYS)} = V_{DD}$ of ASIC guarantees that all interface signals ending with the suffix "_SYS" on the system side will be disabled when $V_{CC(SYS)}$ goes low, protecting the ASIC I/O signals from exceeding its local V_{DD} . In this mode, even if $V_{CC(5V0)}$ is powered, HDMI_5V0_CON go active and hot plug events can be detected only when the ASIC power supply rail is on.

Strapping CEC_STBY = $V_{CC(5V0)}$ is the most basic configuration where the buffers are enabled whenever the local $V_{CC(5V0)}$ and $V_{CC(SYS)}$ supplies reach minimum operating levels.


DVI and HDMI interface ESD and overcurrent protection

9.6 Backdrive protection

The HDMI connector contains various signals which can partly supply current into an HDMI device that is powered down.

Typically, the DDC lines and the CEC signals can force significant current back into the powered-down rails as shown in <u>Figure 26</u>, causing power-on reset problems with the system, and possible damage. The IP4786CZ32 prevents this backdrive condition whenever the I/O voltage is greater than the local supply.

