mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SD 3.0-compliant memory card integrated voltage level translator with EMI filter and ESD protection

Rev. 2 — 24 May 2013

Product data sheet

1. General description

The device is an SD 3.0-compliant 6-bit bidirectional dual voltage level translator. It is designed to interface between a memory card operating at 1.8 V or 2.9 V signal levels and a host with a fixed nominal supply voltage of 1.2 V to 3.3 V. The device supports SD 3.0 SDR50, DDR50, SDR25, SDR12 and SD 2.0 High-Speed (50 MHz) and Default-Speed (25 MHz) modes. The device has an integrated switchable voltage regulator to supply the card-side I/Os, built-in EMI filters and robust ESD protections (IEC 61000-4-2, level 4).

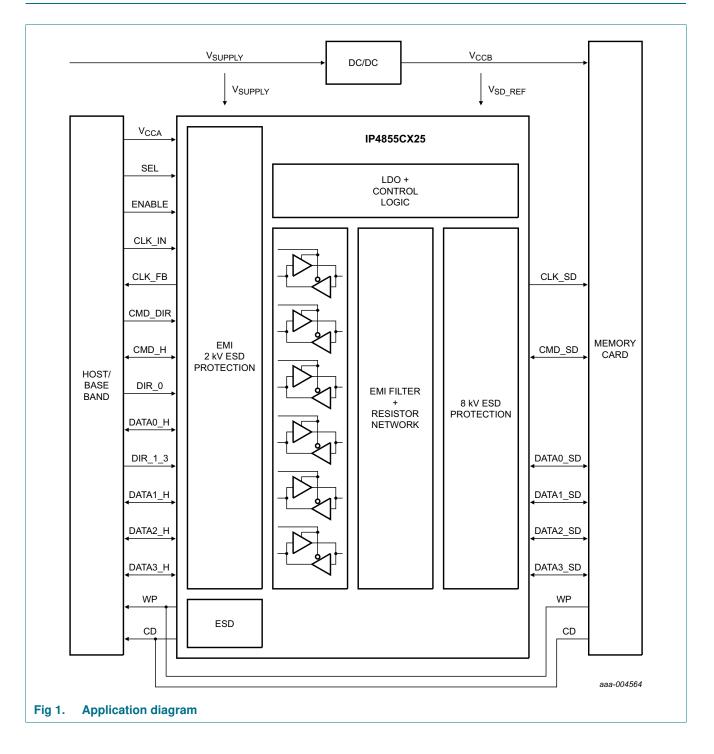
2. Features and benefits

- Supports up to 100 MHz clock rate
- Feedback channel for clock synchronization
- SD 3.0 specification-compliant voltage translation to support SDR50, DDR50, SDR25, SDR12, High-Speed and Default-Speed modes
- Low dropout voltage regulator to supply the card-side I/Os
- Low-power consumption by push-pull output stage with break-before-make architecture
- Integrated pull-up and pull-down resistors: no external resistors required
- Integrated EMI filters suppress higher harmonics of digital I/Os
- Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on card side
- Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- Pb-free, RoHS compliant and free of halogen and antimony (Dark Green compliant)
- 25-ball WLCSP; pitch 0.4 mm

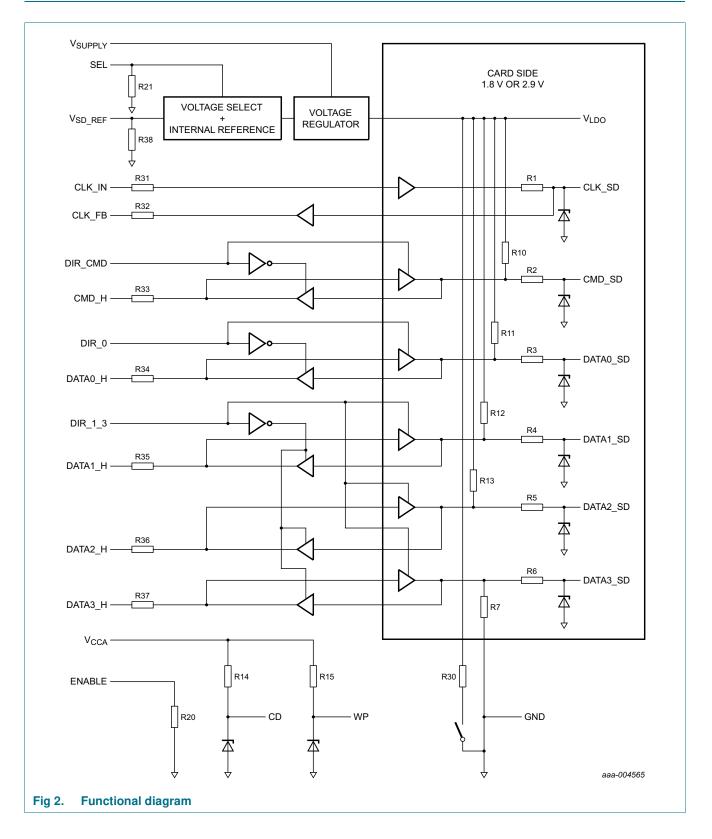
3. Applications

- SD, MMC, microSD memory card interfaces
- Mobile phones, smartphones and tablet PCs
- Card readers in computer
- Digital cameras

4. Ordering information

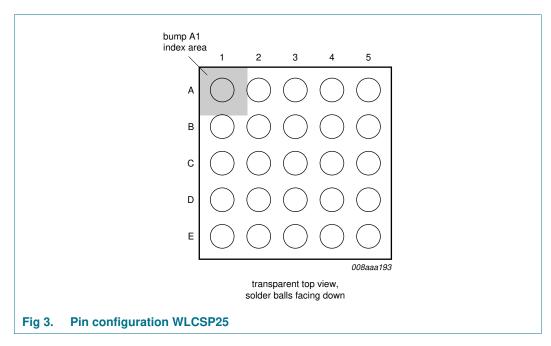

Table 1.Ordering information

Type number	Package	age					
	Name	Description	Version				
IP4855CX25/P	WLCSP25	wafer level chip-size package; 25 bumps (5 \times 5); 2.04 \times 2.04 \times 0.5 mm	IP4855CX25				


SD 3.0-compliant memory card integrated dual voltage level translator

5. Block diagram

SD 3.0-compliant memory card integrated dual voltage level translator


6. Functional diagram

P4855CX25 Product data sheet

7. Pinning information

7.1 Pinning

Table 2.Pin allocation table

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
A1	DATA2_H	A2	DIR_CMD	A3	DIR_0	A4	V _{SUPPLY}	A5	DATA2_SD
B1	DATA3_H	B2	SEL	B3	V _{CCA}	B4	V_{LDO}	B5	DATA3_SD
C1	CLK_IN	C2	ENABLE	C3	GND	C4	V_{SD_REF}	C5	CLK_SD
D1	DATA0_H	D2	CMD_H	D3	CD	D4	CMD_SD	D5	DATA0_SD
E1	DATA1_H	E2	CLK_FB	E3	DIR_1_3	E4	WP	E5	DATA1_SD

7.2 Pin description

Table 3. Pin description

Symbol [1]	Pin	Type ^[2]	Description			
DATA2_H	A1	I/O	data 2 input or output on host side			
DIR_CMD	A2	I	direction control input for command			
DIR_0	A3	I	direction control input for data 0			
V _{SUPPLY}	A4	S	supply voltage (from battery or regulator)			
DATA2_SD	A5	I/O	data 2 input or output on memory card side			
DATA3_H	B1	I/O	data 3 input or output on host side			
SEL	B2	I	card side I/O voltage level select			
V _{CCA}	B3	S	supply voltage from host side			
V _{LDO}	B4	0	internal supply decoupling			
DATA3_SD	B5	I/O	data 3 input or output on memory card side			

P4855CX25 Product data sheet

NXP Semiconductors

SD 3.0-compliant memory card integrated dual voltage level translator

Table 3.	Pin descripti	i on continue	ed
Symbol [1]	Pin	Type ^[2]	Description
CLK_IN	C1	I	clock signal input on host side
ENABLE	C2	l	device enable input
GND	C3	S	supply ground
V_{SD_REF}	C4	l	reference voltage for the internal voltage regulator
CLK_SD	C5	0	clock signal output on memory card side
DATA0_H	D1	I/O	data 0 input or output on host side
CMD_H	D2	I/O	command input or output on host side
CD	D3	0	card detect switch biasing output
CMD_SD	D4	I/O	command input or output on memory card side
DATA0_SE	D D5	I/O	data 0 input or output on memory card side
DATA1_H	E1	I/O	data 1 input or output on host side
CLK_FB	E2	0	clock feedback output on host side
DIR_1_3	E3	I	direction control input for data 1, data 2, data 3
WP	E4	0	write protect switch biasing output
DATA1_SE) E5	I/O	data 1 input or output on memory card side

[1] The pin names relate particularly to SD memory cards, but also apply to microSD and MMC memory cards.

[2] I = input, O = output, I/O = input and output, S = power supply

8. Functional description

8.1 Level translator

The bidirectional level translator shifts the data between the I/O supply levels of the host and the memory card. Dedicated direction control signals determine if a command and data signals are transferred from the memory card to the host (card read mode) or from the host to the memory card (card write mode). The voltage translator has to support several clock and data transfer rates at the signaling levels specified in the SD 3.0 standard specification.

Signal level (V)	Clock rate (MHz)	Data rate (MB/s)
• • •		Data fate (MD/S)
3.3	25	12.5
3.3	50	25
1.8	25	12.5
1.8	50	25
1.8	100	50
1.8	50	50
	1.8 1.8 1.8 1.8	3.3 25 3.3 50 1.8 25 1.8 50 1.8 100

Table 4. Supported modes

Product data sheet

IP4855CX25

5 of 30

8.2 Enable and direction control

The pin ENABLE enables/disables the Low DropOut (LDO) and is used to put the host-side, card-side I/O drivers into high-ohmic 3-state mode.

Table 5. I/O	function cont	rol signal truth	table			
Control		Host-side		Memory card-side		
Pin	Level ^[1]	Pin	Function	Pin	Function	
Pin ENABLE	= HIGH and V _C	_{CA} ≥ 1.62 V		'	"	
DIR_CMD	Н	CMD_H	input	CMD_SD	output	
	L	CMD_H	output	CMD_SD	input	
DIR_0	Н	DATA0_H	input	DATA0_SD	output	
	L	DATA0_H	output	DATA0_SD	input	
DIR_1_3	Η	DATA1_H DATA2_H DATA3_H	input	DATA1_SD DATA2_SD DATA3_SD	output	
	L	DATA1_H DATA2_H DATA3_H	output	DATA1_SD DATA2_SD DATA3_SD	input	
-	-	CLK_IN	input	CLK_SD	output	
-	-	CLK_FB	output	-	-	
Pin ENABLE	= LOW or V _{CC}	₄ ≤ 0.8 V				
DIR_CMD	Х	CMD_H	high-ohmic	CMD_SD	high-ohmic	
DIR_0	Х	DATA0_H	high-ohmic	DATA0_SD	high-ohmic	
DIR_1_3	Х	DATA1_H DATA2_H DATA3_H	high-ohmic	DATA1_SD DATA2_SD DATA3_SD	high-ohmic	
-	-	CLK_IN	input	CLK_SD	high-ohmic	
-	-	CLK_IN	high-ohmic	-	-	

[1] H = HIGH; L = LOW and X = don't care.

8.3 Integrated voltage regulator

The low dropout voltage regulator delivers supply voltage for the voltage translators and the card-side input/output stages. It has to support 1.8 V and 3 V signaling modes as stipulated in the SD 3.0 specification. The switching time between the two output voltage modes is compliant with SD 3.0 specification. Depending on the signaling level at pin SEL, the regulator delivers 1.8 V (SEL = HIGH) or 2.9 V (SEL = LOW, $V_{SD_REF} < 1 V$). For card supply voltage, see <u>Section 8.4</u>.

Table 0.	SD card Sit	ie voltage i	ever control signal truth table	
Input		Output		
SEL ^[1]	V_{SD_REF}	V _{LDO}	Pin ^[2]	Function
Н	irrelevant	1.8 V	DATA0_SD to DATA3_SD, CLK_SD	low supply voltage level (1.8 V_{typ})
L	< 1 V	2.9 V	DATA0_SD to DATA3_SD, CLK_SD	high supply voltage level (2.9 V_{typ})
	> 1.5 V	$V_{SD REF}$	DATA0_SD to DATA3_SD, CLK_SD	supply voltage level based on $V_{SD\ REF}$

Table 6. SD card side voltage level control signal truth table

 $[1] \quad H=HIGH \ and \ L=LOW.$

[2] Host-side pins are not influenced by SEL.

8.4 Memory card voltage tracking (reference select)

The device can track the memory card supply via pin V_{SD_REF} . This allows achieving optimum interoperability by perfectly matching input/output levels between voltage translator and memory card in the 3 V signaling mode. Therefore, the voltage regulator aims to follow the reference voltage provided at input V_{SD_REF} directly. If tracking of the memory card supply is not desired, connect pin V_{SD_REF} to ground so the voltage regulator refers to an integrated voltage reference. For 1.8 V (SEL = HIGH) signaling, the voltage regulator is referred to the internal reference which is independent of the voltage at V_{SD_REF} .

8.5 Feedback clock channel

The clock is transmitted from the host to the memory card side. The voltage translator and the Printed-Circuit Board (PCB) tracks introduce some amount of delay. It reduces timing margin for data read back from memory card, especially at higher data rates. Therefore, a feedback path is provided to compensate the delay. The reasoning behind this approach is the fact that the clock is always delivered by the host, while the data in the timing critical read mode comes from the card.

8.6 EMI filter

All input/output driver stages are equipped with EMI filters to reduce interferences towards sensitive mobile communication.

8.7 ESD protection

The device has robust ESD protections on all memory card pins as well as on the V_{SD_REF} and V_{SUPPLY} pins. The architecture prevents any stress for the host: the voltage translator discharges any stress to supply ground.

Pins Write Protect (WP) and Card Detection (CD) might be pulled down by the memory card which has to be detected by the host. Both signals must be HIGH if no card is inserted. Therefore the pins are equipped with International Electrotechnical Commission (IEC) system-level ESD protections and pull-up resistors connected to the host supply V_{CCA} .

IP4855CX25

7 of 30

Limiting values 9.

Limiting values Table 7.

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	4 ms transient			
		on pin V _{SUPPLY}	-0.5	+6.0	V
		on pin V _{CCA}	-0.5	+4.6	V
VI	input voltage	4 ms transient at I/O pins	-0.5	+4.6	V
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$	-	1000	mW
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2, level 4, all memory card-side pins, V_{SUPPLY},V_{SD_REF},WP and CD to ground	<u>[1]</u> –8000	+8000	V
		Human Body Model (HBM) JEDEC JESD22-A114F; all pins	-2000	+2000	V
		Machine Model (MM) JEDEC JESD22-A115; all pins	-200	+200	V
I _{lu(IO)}	input/output latch-up current	JESD 78B: -0.5 V_{CC} < V_{I} < 1.5 V_{CC} ; T_{j} < 125 °C	-100	+100	mA

[1] All system level tests are performed with the application-specific capacitors connected to the supply pins V_{SUPPLY}, V_{LDO} and V_{CCA}.

10. Recommended operating conditions

Table 8.	Operating cond	itions					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage	on pin V _{SUPPLY}	[1]	2.5	-	5.5	V
		on pin V _{CCA}		1.1	-	3.6	V
VI	input voltage	host side	[2]	-0.3	-	$V_{CCA} + 0.3$	V
		memory card side		-0.3	-	$V_{O(reg)} + 0.3$	V
C _{ext}	external capacitance	recommended capacitor at pin V_{LDO}		-	1.0	-	μF
ESR	equivalent series resistance	at pin V _{LDO}		0	-	50	mW
C _{ext}	external	recommended capacitor at pin $V_{\mbox{SUPPLY}}$		-	0.1	-	μF
	capacitance	recommended capacitor at pin V_{CCA}		-	0.1	-	μF

[1] By minimum value the device is still fully functional, but the voltage on pin V_{LDO} might drop below the recommended memory card supply voltage.

[2] The voltage must not exceed 3.6 V.

IP4855CX25 **Product data sheet**

SD 3.0-compliant memory card integrated dual voltage level translator

Table 9. Integrated resistors

 $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{pd}	pull-down resistance	R7; tolerance ±30 %	329	470	611	kΩ
		R30; tolerance ±30 %	70	100	130	Ω
		R38; tolerance ±30 %	200	350	500	kΩ
		R20, R21; tolerance ±30 %	200	350	500	kΩ
R _{pu}	pull-up resistance	R10; tolerance ±30 %	10.5	5 15	19.5	kΩ
		R11 to R13; tolerance ±30 %	49	70	91	kΩ
		R14 and R15; tolerance ± 30 %	70	100	130	kΩ
Rs	series resistance	card side; R1 to R6; tolerance $\pm 20~\%$	[1] 32	40	48	Ω
		host side; R31 to R37; tolerance ± 20 %	[<u>1]</u> 26	33	40	Ω

[1] Guaranteed by design and characterization.

11. Static characteristics

Table 10. Static characteristics

At recommended operating conditions; $T_{amb} = -40$ °C to +85 °C; voltages are referenced to GND (ground = 0 V); $C_{ext} = 1 \ \mu F$ at pin V_{LDO} ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
Supply	voltage regulator for ca	ard-side I/O pin: V _{LDO}				
V _{O(reg)}	regulator output	SEL = LOW; V _{SD_REF} < 1 V; V _{SUPPLY} \ge 2.9 V	2.75	2.9	3.0	V
	voltage	$\begin{array}{l} \text{SEL = LOW; V_{SD_REF} > 1.5 V;} \\ \text{V}_{SUPPLY} \geq \text{V}_{SD_REF} \end{array}$	V _{SD_REF} - 0.15	V_{SD_REF}	V _{SD_REF} + 0.05	V
		SEL = HIGH; $V_{SUPPLY} \ge 2.5 V$	1.7	1.8	1.95	V
$V_{do(reg)}$	regulator dropout voltage	SEL = LOW; V _{SUPPLY} \leq 2.9 V; I _O = 50 mA	-	-	150	mV
Host-sid	le input signals: CMD_	H and DATA0_H to DATA3_H, CLK_IN				
V _{IH}	HIGH-level input voltage		$0.625 \times V_{CCA}$	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.25 \times V_{CCA}$	V
ILI	input leakage current	V _{CCA} = 1.8 V; ENABLE = LOW	-	-	1.0	nA
Host-sid	le control signals					
SEL, EN	ABLE					
V _{IH}	HIGH-level input voltage		0.75	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	0.15	V
DIR_0, [DIR_1_3, DIR_CMD					
V _{IH}	HIGH-level input voltage		$0.65 \times V_{CCA}$	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.35 \times V_{CCA}$	V

Table 10. Static characteristics ...continued

At recommended operating conditions; $T_{amb} = -40$ °C to +85 °C; voltages are referenced to GND (ground = 0 V); $C_{ext} = 1 \ \mu F$ at pin V_{LDO} ; unless otherwise specified.

-	Parameter	Conditions	Min	Typ[1]	Max	Unit
V _{SD_REF}						
V _{IH}	HIGH-level input voltage		1.5	-	3.63	V
VIL	LOW-level input voltage		-0.3	-	1.0	V
Host-sid	le output signals: CLK	FB, CMD_H and DATA0_H to DATA3_H				
V _{OH}	HIGH-level output voltage	I_{O} = 2 mA; V_{I} = V_{IH} (card side)	$0.75 imes V_{CCA}$		-	V
V _{OL}	LOW-level output voltage	I_{O} = -2 mA; V_{I} = V_{IL} (card side)	-	-	$0.125 \times V_{CCA}$	V
Card-sid	le input signals: CMD	SD and DATA0_SD to DATA3_SD				
V _{IH}	HIGH-level input voltage	SEL = LOW (2.9 V interface)	$0.625 \times V_{O(reg)}$	-	V _{O(reg)} + 0.3	V
		SEL = HIGH (1.8 V interface)	$\begin{array}{c} 0.625 \times \\ V_{O(reg)} \end{array}$	-	V _{O(reg)} + 0.3	V
V _{IL}	LOW-level input voltage	SEL = LOW (2.9 V interface)	-0.3	-	$0.25 \times V_{O(reg)}$	V
		SEL = HIGH (1.8 V interface)	-0.3	-	$0.25 imes V_{O(reg)}$	V
Card-sic	le output signal					
CMD_SE	D and DATA0_SD to DA	TA3_SD, CLK_SD				
V _{OH}	HIGH-level output voltage	$I_O = -4 \text{ mA}; V_I = V_{IH} \text{ (host side)}; \text{SEL} = LOW $ (2.9 V interface)	$0.75 \times V_{O(reg)}$	-	V _{O(reg)} + 0.3	V
		$I_O = -2 \text{ mA}; V_I = V_{IH} \text{ (host side)}; \text{SEL} = \text{HIGH} $ (1.8 V interface)	$0.75 \times V_{O(reg)}$	-	V _{O(reg)} + 0.3	V
V _{OL}	LOW-level output voltage	$I_O = 4 \text{ mA}; V_I = V_{IL} \text{ (host side)}; \text{SEL} = LOW (2.9 V interface)$	-0.3	-	$0.125 \times V_{O(reg)}$	V
		$I_O = 2 \text{ mA}; V_I = V_{IL} \text{ (host side)}; \text{SEL} = \text{HIGH}$ (1.8 V interface)	-0.3	-	$0.125 \times V_{O(reg)}$	V
I _{O(sc)}	short-circuit output current	card-side pins connected to ground; host-side input signals = HIGH; $V_{SD_REF} = 3.6 V$; $V_{SUPPLY} = 5.5 V$; $V_{CCA} = 3.6 V$; SEL = LOW; DIR_1_3, DIR_CMD, DIR_0 = HIGH	-	-	100	mA
Bus sign	al equivalent capacitand	ce				
C _{ch}	channel capacitance	$\label{eq:VI} \begin{array}{l} V_{I} = 0 \; V; \; f_{i} = 1 \; MHz; \; V_{SUPPLY} = 3.5 \; V; \\ V_{CCA} = 1.8 \; V \end{array}$	[2]			
		host side	-	3.5	5	pF
		card side	-	5	10	pF

Table 10. Static characteristics ...continued

At recommended operating conditions; $T_{amb} = -40$ °C to +85 °C; voltages are referenced to GND (ground = 0 V); $C_{ext} = 1 \ \mu F$ at pin V_{LDO} ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
Current	consumption					
I _{CC(stat)}	static supply current	ENABLE = HIGH (active mode); all inputs = HIGH; DIR = LOW				
		SEL = LOW (2.9 V interface)	-	-	100	μA
		SEL = HIGH (1.8 V interface)	-	-	100	μA
I _{CC(stb)}	standby supply current	ENABLE = LOW (inactive mode)	-	-	1	μA

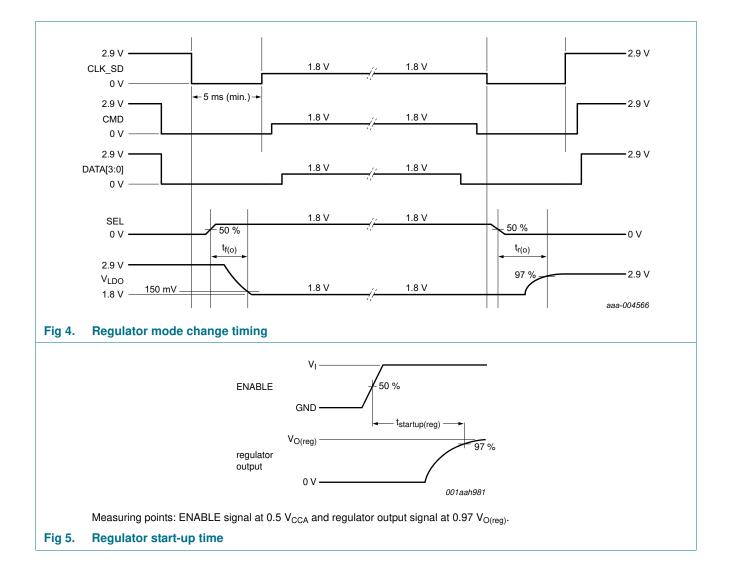
[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[2] EMI filter line capacitance per data channel from I/O driver to pin; C_{ch} is guaranteed by design.

12. Dynamic characteristics

12.1 Voltage regulator

Table 11. Voltage regulator


 $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Voltage reg	ulator output pin: V _{LDO}					
t _{startup(reg)}	regulator start-up time	V_{CCA} = 1.8 V; V_{SUPPLY} = 3.5 V; C_{ext} = 1 μ F; see <u>Figure 5</u>	-	-	100	μS
t _{f(0)}	output fall time	V _{O(reg)} = 2.9 V to 1.8 V; SEL = LOW to HIGH; see <u>Figure 4</u>	-	-	1	ms
t _{r(o)}	output rise time	V _{O(reg)} = 1.8 V to 2.9 V; SEL = HIGH to LOW; see <u>Figure 4</u>	-	-	100	μS

NXP Semiconductors

IP4855CX25

SD 3.0-compliant memory card integrated dual voltage level translator

IP4855CX25

12 of 30

12.2 ESD characteristic of pin write protect and card detect

Table 12. ESD characteristic of write protect and card detect

At recommended operating conditions; $T_{amb} = +25 \ ^{\circ}C$; voltages are referenced to GND (ground = 0 V); unless otherwise specified

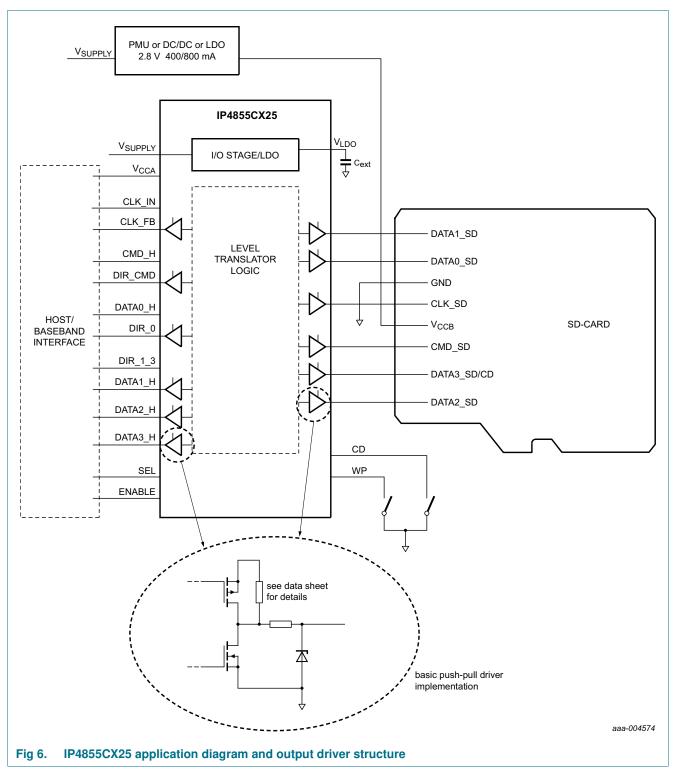
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESD prot	ection pins: WP and C	D				
V_{BR}	breakdown voltage	TLP; I = 1 mA	-	8	-	V
r _{dyn}	dynamic resistance	positive transient	<u>[1]</u> -	0.5	-	Ω
		negative transient	[1] -	0.5	-	Ω

[1] TLP according to ANSI-ESD STM5.5.1/IEC 62615 $Z_0 = 50 \Omega$; pulse width = 100 ns; rise time = 200 ps; averaging window = 50 ns to 80 ns

13. Application information

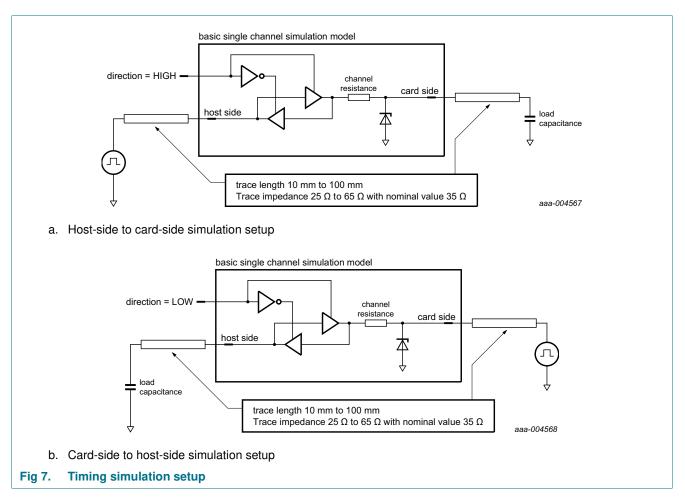
The IP4855CX25 is optimized to connect SD 3.0 and SD 2.0 compatible memory cards to 1.8 V base band/host interfaces. While the internal I/O interface towards the memory card is supplied by the IP4855CX25 integrated voltage regulator, any connected memory card has to be supplied from an external source. Using for example DDR50 or SDR50 modes requires a power supply with up to 400 mA DC current capabilities.

Place IP4855CX25 as close as possible to the card holder to minimize the influence of trace length on the timing values. The trace length between IP4855CX25 and the card has a much bigger influence on the timing than the identical length between the host interface and the IP4855CX25.

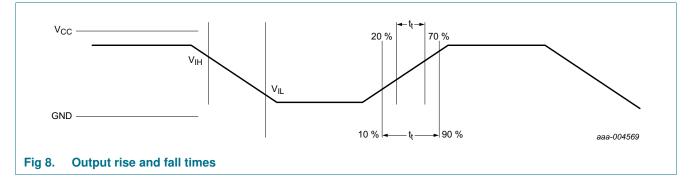

IP4855CX25

13 of 30

NXP Semiconductors

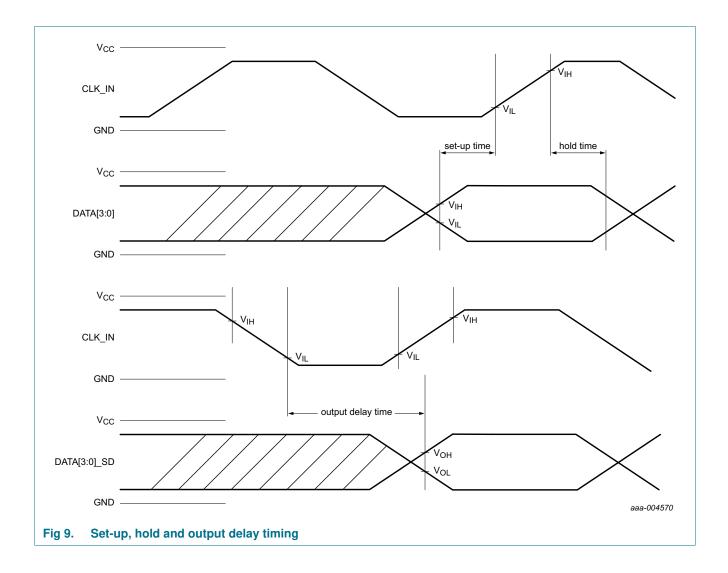

IP4855CX25

SD 3.0-compliant memory card integrated dual voltage level translator



One main task of the level translator is to shift the signal within the SD 3.0 specification. Therefore, the following simulation results show the low impact of the device. Use the clock feedback channel for a compensation of delay introduced by PCB traces and IP4855CX25.

Product data sheet


13.1 Simulation setup for transition time, propagation delay and set-up/hold times

NXP Semiconductors

IP4855CX25

SD 3.0-compliant memory card integrated dual voltage level translator

IP4855CX25

16 of 30

NXP Semiconductors

SD 3.0-compliant memory card integrated dual voltage level translator

13.2 Interface voltage timing data

Table 13. Output rise and fall times card side

 $V_{SUPPLY} = 4 V$; unless otherwise specified; track impedance 35 Ω , track length (to and from IP4855CX25) 15 mm; $R_{source} = 50 \Omega$; see <u>Figure 7</u> for set-up circuit and <u>Figure 8</u> for timing diagram; $V_{CCA} = 1.8 V$; transition time is the same as output rise time and output fall time

Symbol	Parameter	Conditions	Min.	Тур	Мах	Unit	
Memory	card-side output pir	ns: CLK_SD, CMD_SD and DATA0_SD to DATA3_	_SD; 2.9 V mo	ode (SEL	= LOW)		
Referenc	e points at 20 % and	70 %					
t _t	transition time	C _L = 10 pF					
		nominal case; T_{amb} = +25 °C; V_{LDO} = 2.9 V	0.8	1.1	1.3	ns	
		best case; $T_{amb} = -40 ^{\circ}\text{C}$; $V_{LDO} = 3.6 \text{ V}$	0.8	1.0	1.2	ns	
		worst case; T_{amb} = +85 °C; V_{LDO} = 2.7 V	0.8	1.1	1.3	ns	
		C _L = 20 pF	[1]				
		nominal case; T_{amb} = +25 °C; V_{LDO} = 2.9 V	1.4	1.6	1.9	ns	
		best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 3.6 \text{ V}$	1.3	1.6	1.8	ns	
		worst case; T_{amb} = +85 °C; V_{LDO} = 2.7 V	1.4	1.6	1.9	ns	
Referenc	e points at 10 % and	90 % [2]					
t	transition time	C _L = 10 pF					
		nominal case; T_{amb} = +25 °C; V_{LDO} = 2.9 V	1.9	2.1	2.4	ns	
		best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 3.6 \text{ V}$	1.9	2.0	2.2	ns	
		worst case; T_{amb} = +85 °C; V_{LDO} = 2.7 V	2.0	2.2	2.4	ns	
		C _L = 20 pF	[1]				
		nominal case; T_{amb} = +25 °C; V_{LDO} = 2.9 V	2.9	3.1	3.4	ns	
	best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 3.6 \text{ V}$	2.9	3.0	3.2	ns		
		worst case; T_{amb} = +85 °C; V_{LDO} = 2.7 V	2.9	3.2	3.5	ns	
Memory	card-side output pir	ns: CLK_SD, CMD_SD and DATA0_SD to DATA3_	SD; 1.8 V mo	ode (SEL	= HIGH)		
Referenc	e points at 20 % and	70 %					
t	transition time	C _L = 10 pF					
		nominal case; T_{amb} = +25 °C; V_{LDO} = 1.8 V	0.8	1.1	1.3	ns	
		best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 1.95 \text{ V}$	0.8	1.0	1.2	ns	
		worst case; T_{amb} = +85 °C; V_{LDO} = 1.7 V	0.8	1.1	1.3	ns	
	transition time	transition time $C_L = 20 \text{ pF}$ [1]					
t _t							
ł		nominal case; T_{amb} = +25 °C; V_{LDO} = 1.8 V	1.4	1.6	1.9	ns	
t		nominal case; T_{amb} = +25 °C; V_{LDO} = 1.8 V best case; T_{amb} = -40 °C; V_{LDO} = 1.95 V	1.4 1.3	1.6 1.6	1.9 1.8	ns ns	
t _t							
	e points at 10 % and	best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 1.95 \text{ V}$ worst case; $T_{amb} = +85 \text{ °C}$; $V_{LDO} = 1.7 \text{ V}$	1.3	1.6	1.8	ns	
Referenc		best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 1.95 \text{ V}$ worst case; $T_{amb} = +85 \text{ °C}$; $V_{LDO} = 1.7 \text{ V}$	1.3	1.6	1.8	ns	
t _t Referenc t _t	e points at 10 % and	best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 1.95 \text{ V}$ worst case; $T_{amb} = +85 \text{ °C}$; $V_{LDO} = 1.7 \text{ V}$ 90 % [2]	1.3	1.6	1.8	ns	
Referenc	e points at 10 % and	best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 1.95 \text{ V}$ worst case; $T_{amb} = +85 \text{ °C}$; $V_{LDO} = 1.7 \text{ V}$ 90 % [2] $C_L = 10 \text{ pF}$	1.3 1.4	1.6 1.6	1.8 1.9	ns ns	

Table 13. Output rise and fall times card side ...continued

 $V_{SUPPLY} = 4 V$; unless otherwise specified; track impedance 35 Ω , track length (to and from IP4855CX25) 15 mm; $R_{source} = 50 \Omega$; see Figure 7 for set-up circuit and Figure 8 for timing diagram; $V_{CCA} = 1.8 V$; transition time is the same as output rise time and output fall time

Symbol	Parameter	Conditions	Min.	Тур	Max	Unit
tt	transition time	C _L = 20 pF	[1]			
		nominal case; T_{amb} = +25 °C; V_{LDO} = 1.8 V	2.9	3.1	3.4	ns
		best case; $T_{amb} = -40 \text{ °C}$; $V_{LDO} = 1.95 \text{ V}$	2.9	3.0	3.2	ns
		worst case; T_{amb} = +85 °C; V_{LDO} = 1.7 V	2.9	3.2	3.5	ns

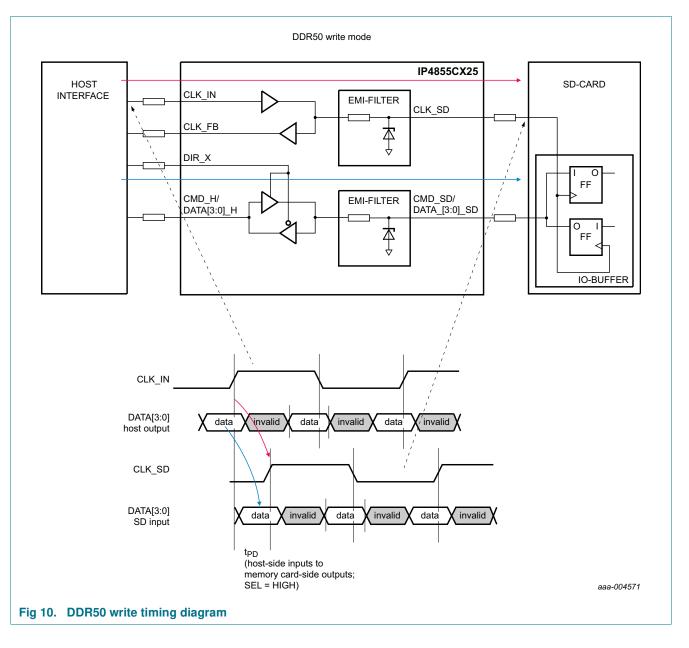
[1] A capacitive load of $C_L = 20 \text{ pF}$ is out of the range of allowed SD-card interface parasitic capacitance.

[2] Reference points 90 % and 10 % are not required according to the SD 3.0 specification.

Table 14. Output rise and fall times host side

 $V_{SUPPLY} = 4.0 V$; SEL = LOW; $V_{O(reg)} = 2.9 V$; unless otherwise specified; track impedance 35 Ω , track length (to and from IP4855CX25) 15 mm; $R_{source} = 50 \Omega$; see <u>Figure 7</u> for set-up circuit and <u>Figure 8</u> timing diagram; transition time is the same as output rise time and output fall time

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Host-sid	e output pins: CLK_F	B, CMD_H and DATA0_H to DATA3_H (3.3 V host)				
Referenc	e points at 20 % and 7	0 %				
tt	transition time	$C_L = 5 \text{ pF}$				
		nominal case; T_{amb} = +25 °C; V_{CCA} = 3.3 V	0.5	0.6	0.7	ns
		best case; $T_{amb} = -40 \text{ °C}$; $V_{CCA} = 3.6 \text{ V}$	0.5	0.6	0.7	ns
		worst case; T_{amb} = +85 °C; V_{CCA} = 2.7 V	0.5	0.6	0.7	ns
Referenc	e points at 10 % and 9	0 % [1]				
t _t	transition time	$C_L = 5 \text{ pF}$				
		nominal case; T_{amb} = +25 °C; V_{CCA} = 3.3 V	1.0	1.3	1.5	ns
		best case; $T_{amb} = -40 \text{ °C}$; $V_{CCA} = 3.6 \text{ V}$	1.0	1.2	1.4	ns
		worst case; T_{amb} = +85 °C; V_{CCA} = 2.7 V	1.3	1.4	1.6	ns
Host-sid	e output pins: CLK_F	B, CMD_H and DATA0_H to DATA3_H (1.8 V host)				
Referenc	e points at 20 % and 7	0 %				
t _t	transition time	$C_L = 5 \text{ pF}$				
		nominal case; T_{amb} = +25 °C; V_{CCA} = 1.8 V	0.5	0.6	0.7	ns
		best case; $T_{amb} = -40 \text{ °C}$; $V_{CCA} = 1.9 \text{ V}$	0.5	0.6	0.7	ns
		worst case; T_{amb} = +85 °C; V_{CCA} = 1.62 V	0.5	0.6	0.7	ns
Referenc	e points at 10 % and 9	0 % [1]				
	transition time	C _L = 5 pF				
t _t						
tt		nominal case; T _{amb} = +25 °C; V _{CCA} = 1.8 V	1.0	1.3	1.5	ns
tt		nominal case; $T_{amb} = +25 \text{ °C}$; $V_{CCA} = 1.8 \text{ V}$ best case; $T_{amb} = -40 \text{ °C}$; $V_{CCA} = 1.9 \text{ V}$	1.0 1.0	1.3 1.2	1.5 1.4	ns ns


[1] Reference points 90 % and 10 % are not required according to the SD 3.0 specification.

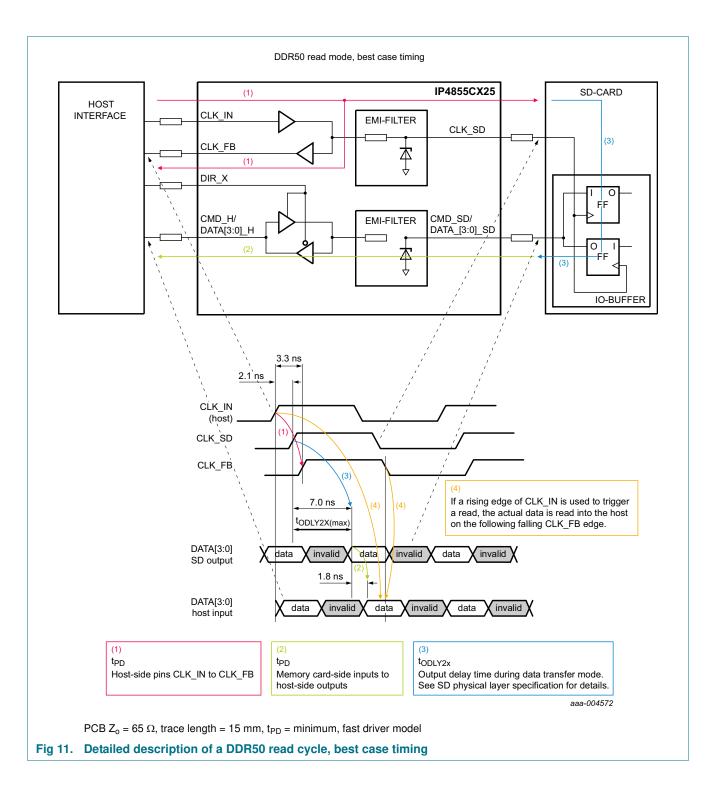
13.3 DDR50 mode timing details

The Default-Speed (DS) and High-Speed (HS) modes use 3.3 V signaling and offer a maximum of 25 MB/s. Besides these modes, IP4855CX25 also supports the SDR12, SDR25 and DDR50 modes using 1.8 V signaling and up to 50 MB/s.

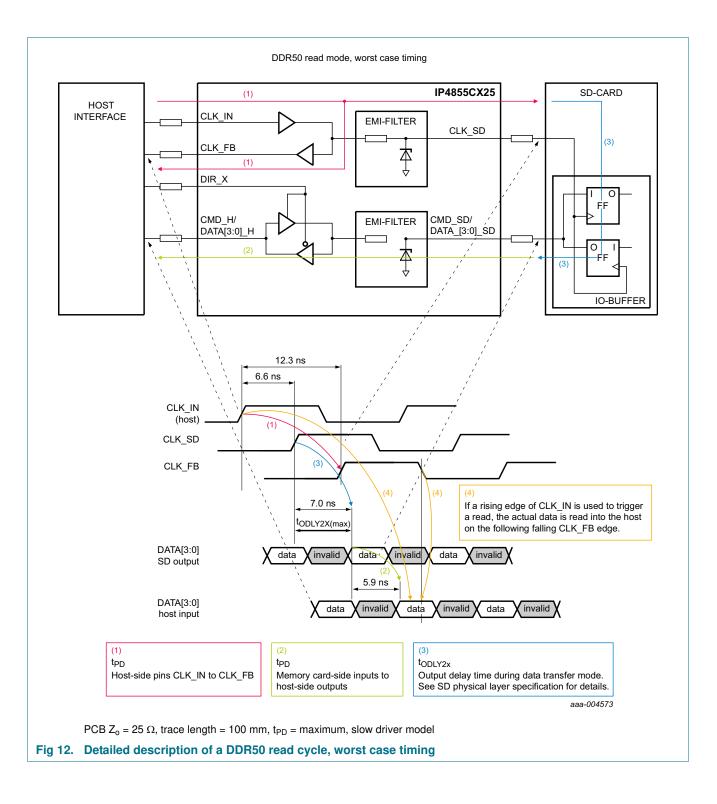
Especially the DDR50 mode introduces a basic change in the timing behavior of the SD card interface. The SDR12 and SDR50 modes are similar to the DS and HS modes.

Any delay on all relevant signal lines (as shown in the timing diagram in <u>Figure 10</u>) is uncritical for SD card write operations as long as the skew between the different signals is small enough.

In contrast to the write cycle, the read cycle is more complex to analyze and depends on the IP4855CX25 delay, the maximum delay added by the PCB and the additional setup time of the SD card.

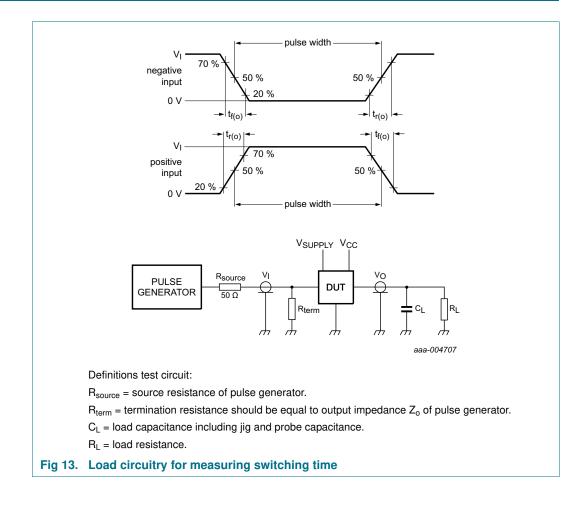

Table 15.	DDR50 read mode:	parameters for b	pest case and worst	case timings
-----------	------------------	------------------	---------------------	--------------

Parameter	Best case timing (Figure 11)	Worst case timing (Figure 12)
PCB output impedance Z_o	65 Ω	25 Ω
Symmetrical trace length	15 mm per side	100 mm per side
t _{PD}	minimum	maximum
Driver model	fast	slow


The same mechanism is triggered on each falling clock edge too, as the DDR50 mode uses both edges of the clock signal for data transfer.

According to the SD 3.01 physical layer specification, the maximum delay between CLK_IN (CLK_SD signal) at the SD card and data out from the SD card (DATA[3:0]_SD out) is 7.0 ns. This value is specified for a load of $C_L \le 25$ pF.

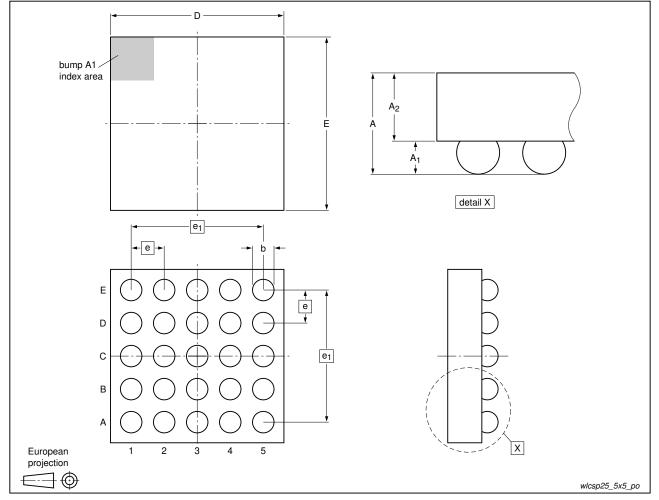
SD 3.0-compliant memory card integrated dual voltage level translator



SD 3.0-compliant memory card integrated dual voltage level translator

SD 3.0-compliant memory card integrated dual voltage level translator

14. Test information



NXP Semiconductors

IP4855CX25

SD 3.0-compliant memory card integrated dual voltage level translator

15. Package outline

WLCSP25: wafer level chip-size package; 25 bumps (5 x 5)

Fig 14. Package outline IP4855CX25 (WLCSP25)

Table 16.	Dimensions	of IP4855CX25	for Figure 14
-----------	------------	---------------	---------------

Symbol	Min	Тур	Мах	Unit
A	0.44	0.47	0.50	mm
A ₁	0.18	0.20	0.22	mm
A ₂	0.25	0.27	0.29	mm
b	0.21	0.26	0.31	mm
D	1.99	2.04	2.09	mm
E	1.99	2.04	2.09	mm
е	-	0.4	-	mm

P4855CX25 Product data sheet

16. Design and assembly recommendations

16.1 PCB design guidelines

For optimum performance, use a Non-Solder Mask PCB Design (NSMD), also known as a copper-defined design, incorporating laser-drilled micro-vias connecting the ground pads to a buried ground-plane layer. This results in the lowest possible ground inductance and provides the best high frequency and ESD performance. For this case, refer to <u>Table 17</u> for the recommended PCB design parameters.

Table 17. Recommended PCB design parameters

Parameter	Value or Specification [1]
PCB pad diameter	250 μm
Micro-via diameter	100 μm (0.004 inch)
Solder mask aperture diameter	325 μm
Copper thickness	20 μm to 40 μm
Copper finish	AuNi or OSP
PCB material	FR4

[1] OSP: Organic Solderability Preservation FR4: Flame Retard 4

16.2 PCB assembly guidelines for Pb-free soldering

Table 18. Assembly recommendations

Parameter	Value or Specification
Solder screen aperture diameter	290 μm
Solder screen thickness	100 μm (0.004 inch)
Solder paste: Pb-free	SnAg (3 % to 4 %) Cu (0.5 % to 0.9 %)
Solder/flux ratio	50/50
Solder reflow profile	see Figure 15