

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

IP4856CX25/C

SD 3.0-compliant memory card integrated dual voltage level translator with EMI filter and ESD protection

Rev. 2 — 15 October 2014

Product data sheet

1. General description

The device is an SD 3.0-compliant 6-bit bidirectional dual voltage level translator. It is designed to interface between a memory card operating at 1.8 V or 2.9 V signal levels and a host with a fixed nominal supply voltage of 1.7 V to 3.6 V. The device supports SD 3.0, SDR104, SDR50, DDR50, SDR25, SDR12 and SD 2.0 high-speed (50 MHz) and default-speed (25 MHz) modes. The device has an integrated voltage selectable low dropout regulator to supply the card-side I/Os, built-in EMI filters and robust ESD protections (IEC 61000-4-2, level 4).

2. Features and benefits

- Supports up to 208 MHz clock rate
- Feedback channel for clock synchronization
- SD 3.0 specification-compliant voltage translation to support SDR104, SDR50, DDR50, SDR25, SDR12, high-speed and default-speed modes
- 100 mA low dropout voltage regulator to supply the card-side I/Os
- Low power consumption by push-pull output stage with break-before-make architecture
- Integrated pull-up and pull-down resistors: no external resistors required
- Integrated EMI filters suppress higher harmonics of digital I/Os
- Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on card side
- Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- 25-ball WLCSP; pitch 0.4 mm

3. Applications

- Smartphones
- Mobile handsets
- Digital cameras

- Tablet PCs
- Laptop computers
- SD, MMC or microSD card readers

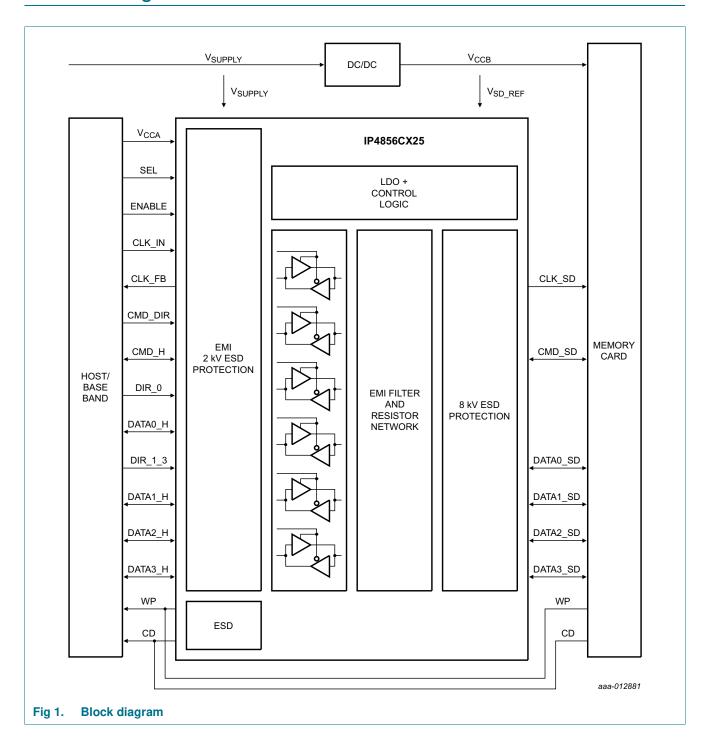
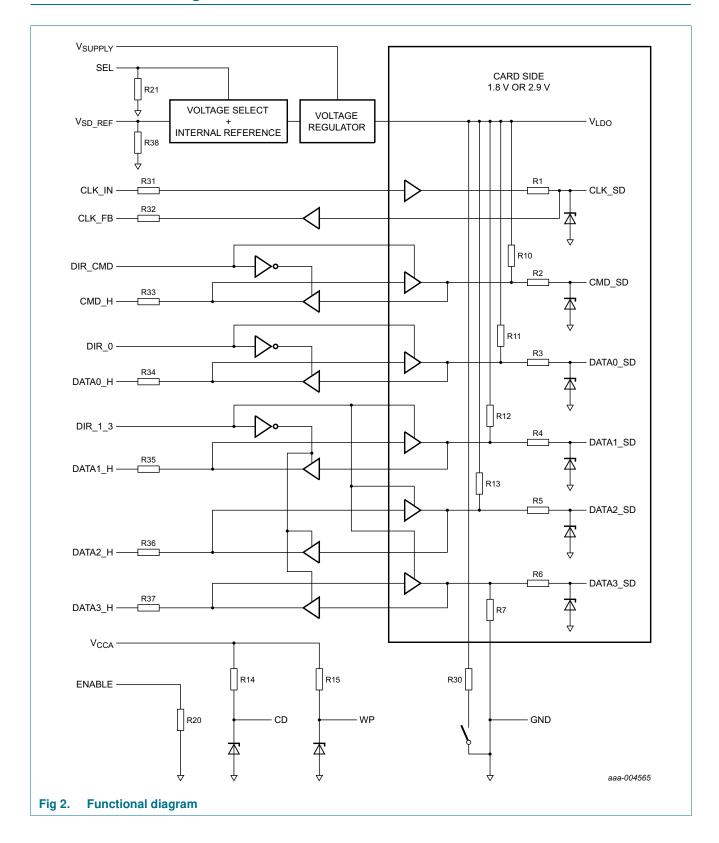

4. Ordering information

Table 1. Ordering information


Type number Package						
	Version					
IP4856CX25/C		wafer level chip-size package with back side coating; 25 bumps (5 \times 5); typical size: 2.05 mm \times 2.05 mm \times 0.51 mm	-			

5. Block diagram

6. Functional diagram

7. Pinning information

7.1 Pinning

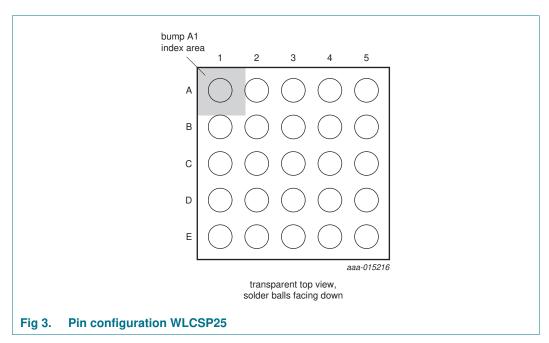


Table 2. Pin allocation table

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
A1	DATA2_H	A2	DIR_CMD	А3	DIR_0	A4	V _{SUPPLY}	A5	DATA2_SD
B1	DATA3_H	B2	SEL	ВЗ	V _{CCA}	B4	V_{LDO}	B5	DATA3_SD
C1	CLK_IN	C2	ENABLE	СЗ	GND	C4	V _{SD_REF}	C5	CLK_SD
D1	DATA0_H	D2	CMD_H	D3	CD	D4	CMD_SD	D5	DATA0_SD
E1	DATA1_H	E2	CLK_FB	E3	DIR_1_3	E4	WP	E5	DATA1_SD

7.2 Pin description

Table 3. Pin description

Symbol ^[1]	Pin	Type ^[2]	Description
DATA2_H	A1	I/O	data 2 input or output on host side
DIR_CMD	A2	1	direction control input for command
DIR_0	A3	I	direction control input for data 0
V _{SUPPLY}	A4	S	supply voltage (from battery or regulator)
DATA2_SD	A5	I/O	data 2 input or output on memory card side
DATA3_H	B1	I/O	data 3 input or output on host side
SEL	B2	I	card side I/O voltage level select
V _{CCA}	B3	S	supply voltage from host side
V_{LDO}	B4	0	internal supply decoupling
DATA3_SD	B5	I/O	data 3 input or output on memory card side

NXP Semiconductors IP4856CX25/C

SD 3.0-compliant memory card integrated dual voltage level translator

 Table 3.
 Pin description ...continued

Symbol[1]	Pin	Type ^[2]	Description
CLK_IN	C1	I	clock signal input on host side
ENABLE	C2	I	device enable input
GND	C3	S	supply ground
V _{SD_REF}	C4	I	reference voltage for the internal voltage regulator
CLK_SD	C5	0	clock signal output on memory card side
DATA0_H	D1	I/O	data 0 input or output on host side
CMD_H	D2	I/O	command input or output on host side
CD	D3	0	card detect switch biasing output
CMD_SD	D4	I/O	command input or output on memory card side
DATA0_SD	D5	I/O	data 0 input or output on memory card side
DATA1_H	E1	I/O	data 1 input or output on host side
CLK_FB	E2	0	clock feedback output on host side
DIR_1_3	E3	I	direction control input for data 1, data 2, data 3
WP	E4	0	write protect switch biasing output
DATA1_SD	E5	I/O	data 1 input or output on memory card side

^[1] The pin names relate particularly to SD memory cards, but also apply to microSD and MMC memory cards.

8. Functional description

8.1 Level translator

The bidirectional level translator shifts the data between the I/O supply levels of the host and the memory card. Dedicated direction control signals determine if a command and data signals are transferred from the memory card to the host (card read mode) or from the host to the memory card (card write mode). The voltage translator has to support several clock and data transfer rates at the signaling levels specified in the SD 3.0 standard specification.

Table 4. Supported modes

Bus speed mode	Signal level (V)	Clock rate (MHz)	Data rate (MB/s)
Default-speed	3.3	25	12.5
High-speed	3.3	50	25
SDR12	1.8	25	12.5
SDR25	1.8	50	25
SDR50	1.8	100	50
SDR104	1.8	208	104
DDR50	1.8	50	50

^[2] I = input, O = output, I/O = input and output, S = power supply.

8.2 Enable and direction control

The pin ENABLE enables/disables the internal Low DropOut (LDO) regulator and is used to put the host-side and card-side I/O drivers into high-ohmic (3-state) mode.

Table 5. I/O function control signal truth table

Control		Host side		Memory card side		
Pin	Level[1]	Pin	Function	Pin	Function	
Pin ENABLE =	HIGH and V _{CCA}	≥ 1.62 V				
DIR_CMD	Н	CMD_H	input	CMD_SD	output	
	L	CMD_H	output	CMD_SD	input	
DIR_0	Н	DATA0_H	input	DATA0_SD	output	
	L	DATA0_H	output	DATA0_SD	input	
DIR_1_3	Н	DATA1_H DATA2_H DATA3_H	input	DATA1_SD DATA2_SD DATA3_SD	output	
	L	DATA1_H DATA2_H DATA3_H	output	DATA1_SD DATA2_SD DATA3_SD	input	
-	-	CLK_IN	input	CLK_SD	output	
-	-	CLK_FB	output	-	-	
Pin ENABLE =	LOW or V _{CCA} ≤	0.8 V	*	*	•	
DIR_CMD	Х	CMD_H	high-ohmic	CMD_SD	high-ohmic	
DIR_0	Х	DATA0_H	high-ohmic	DATA0_SD	high-ohmic	
DIR_1_3	Х	DATA1_H DATA2_H DATA3_H	high-ohmic	DATA1_SD DATA2_SD DATA3_SD	high-ohmic	
-	-	CLK_IN	input	CLK_SD	high-ohmic	
-	-	CLK_IN	high-ohmic	-	-	

^[1] H = HIGH; L = LOW; X = don't care.

8.3 Integrated voltage regulator

The low dropout voltage regulator delivers supply voltage for the voltage translators and the card-side input/output stages. It has to support 1.8 V and 3 V signaling modes as stipulated in the SD 3.0 specification. The switching time between the two output voltage modes is compliant with SD 3.0 specification. Depending on the signaling level at pin SEL, the regulator delivers 1.8 V (SEL = HIGH) or 2.9 V (SEL = LOW, $V_{SD_REF} < 1$ V). For card supply voltage, see Section 8.4.

Table 6. SD card side voltage level control signal truth table

Input		Output				
SEL[1]	V _{SD_REF} [1]	V _{LDO}	Pin ^[2] Function			
Н	Х	1.8 V	DATA0_SD to DATA3_SD, CLK_SD	low supply voltage level (1.8 V typical)		
L	< 1 V	2.9 V	DATA0_SD to DATA3_SD, CLK_SD	high supply voltage level (2.9 V typical)		
	> 1.5 V	V _{SD_REF}	DATA0_SD to DATA3_SD, CLK_SD	supply voltage level based on V _{SD_REF}		

^[1] H = HIGH; L = LOW; X = don't care.

IP4856CX25_C

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

^[2] Host-side pins are not influenced by SEL.

NXP Semiconductors IP4856CX25/C

SD 3.0-compliant memory card integrated dual voltage level translator

An external capacitor is needed between the regulator output pin V_{LDO} and ground for proper operation of the integrated voltage regulator. See <u>Table 8</u> for recommended capacitance and equivalent series resistance. To place the capacitor close to the V_{LDO} pin and maintain short connections to both, to the V_{LDO} and to the ground, is recommended.

8.4 Memory card voltage tracking (reference select)

The device can track the memory card supply via pin V_{SD_REF} . This allows achieving optimum interoperability by perfectly matching input/output levels between voltage translator and memory card in the 3 V signaling mode. Therefore, the voltage regulator aims to follow the reference voltage provided at input V_{SD_REF} directly. If tracking of the memory card supply is not desired, connect pin V_{SD_REF} to ground so the voltage regulator refers to an integrated voltage reference. For 1.8 V (SEL = HIGH) signaling, the voltage regulator is referred to the internal reference which is independent of the voltage at V_{SD_REF} .

8.5 Feedback clock channel

The clock is transmitted from the host to the memory card side. The voltage translator and the Printed-Circuit Board (PCB) tracks introduce some amount of delay. It reduces timing margin for data read back from memory card, especially at higher data rates. Therefore, a feedback path is provided to compensate the delay. The reasoning behind this approach is the fact that the clock is always delivered by the host, while the data in the timing critical read mode comes from the card.

8.6 EMI filter

All input/output driver stages are equipped with EMI filters to reduce interferences towards sensitive mobile communication.

8.7 ESD protection

The device has robust ESD protections on all memory card pins as well as on the V_{SD_REF} and V_{SUPPLY} pins. The architecture prevents any stress for the host: the voltage translator discharges any stress to supply ground.

Pins Write Protect (WP) and Card Detection (CD) might be pulled down by the memory card which has to be detected by the host. Both signals must be HIGH if no card is inserted. Therefore the pins are equipped with International Electrotechnical Commission (IEC) system-level ESD protections and pull-up resistors connected to the host supply V_{CCA} .

9. Limiting values

Table 7. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	4 ms transient			
		on pin V _{SUPPLY}	-0.5	+4.6	V
		on pin V _{CCA}	-0.5	+4.6	V
VI	input voltage	4 ms transient at I/O pins	-0.5	+4.6	V
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	-	1000	mW
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2, level 4, all memory card-side pins, V _{SUPPLY} , V _{SD_REF} , WP and CD to ground			
		contact discharge	-8	+8	kV
		air discharge	-15	+15	kV
		Human Body Model (HBM) JEDEC JESD22-A114F; all pins	-2000	+2000	V
		Machine Model (MM) JEDEC JESD22-A115; all pins	-200	+200	V
I _{lu(IO)}	input/output latch-up current	JESD78B: $-0.5 \times V_{CC} < V_{I} < 1.5 \times V_{CC}; T_{j} < 125 ^{\circ}C$	-100	+100	mA

^[1] All system level tests are performed with the application-specific capacitors connected to the supply pins V_{SUPPLY}, V_{LDO} and V_{CCA}.

10. Recommended operating conditions

Table 8. Operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage	on pin V _{SUPPLY}	1]	2.8	-	3.6	V
		on pin V _{CCA}		1.7	-	V _{SUPPLY}	V
VI	input voltage	host side	2]	-0.3	-	$V_{CCA} + 0.3$	V
		memory card side		-0.3	-	$V_{O(reg)} + 0.3$	V
C _{ext}	external capacitance	recommended capacitor at pin V _{LDO}		-	1.0	-	μF
ESR	equivalent series resistance	at pin V _{LDO}		0	-	50	mΩ
C _{ext}	external	recommended capacitor at pin V _{SUPPLY}		-	0.1	-	μF
	capacitance	recommended capacitor at pin V _{CCA}		-	0.1	-	μF

^[1] By minimum value the device is still fully functional, but the voltage on pin V_{LDO} might drop below the recommended memory card supply voltage.

^[2] The voltage must not exceed 3.6 V.

Table 9. Integrated resistors

T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Mi	n	Тур	Max	Unit
R _{pd} pull-down resistar	pull-down resistance	R7	27	2	470	668	kΩ
		R30	70		100	130	Ω
		R20; R21; R38	20	0	350	500	kΩ
R _{pu}	pull-up resistance	R10	10	.5	15	19.5	kΩ
		R11 to R13	49		70	19.5 91	kΩ
		R14 and R15	70		100	130	kΩ
R _s	series resistance	card side; R1 to R6	[1] 12		15	18	Ω
		host side; R31 to R37	<u>[1]</u> 18		22.5	27	Ω

^[1] Guaranteed by design and characterization.

11. Static characteristics

Table 10. Static characteristics

At recommended operating conditions; $T_{amb} = -40$ °C to +85 °C; voltages are referenced to GND (ground = 0 V); $C_{ext} = 1 \mu F$ at pin V_{LDO} ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
Supply v	oltage regulator for ca	ard-side I/O pin: V _{LDO}				'
V _{O(reg)}	regulator output	SEL = LOW; V _{SD_REF} < 1 V; V _{SUPPLY} ≥ 2.9 V	2.7	2.9	3.3	V
	voltage	SEL = LOW; V _{SD_REF} > 1.5 V; V _{SUPPLY} ≥ V _{SD_REF}	V _{SD_REF} - 0.15	V _{SD_REF}	V _{SD_REF} + 0.15	V
		SEL = HIGH; V _{SUPPLY} ≥ 2.5 V	1.7	1.85	2.0	V
V _{do(reg)}	regulator dropout voltage	SEL = LOW; $V_{SUPPLY} \le 2.9 \text{ V}$; $I_O = 50 \text{ mA}$	-	-	150	mV
I _{O(reg)}	regulator output current		-	-	100	mA
Host-sid	e input signals: CMD_	H, DATA0_H to DATA3_H and CLK_IN	1		1	
V _{IH}	HIGH-level input voltage		0.625 × V _{CCA}	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.35 \times V_{CCA}$	V
ILI	input leakage current	V _{CCA} = 1.8 V; ENABLE = LOW [2]	-	-	1.0	nA
Host-sid	e control signals					
SEL, EN	ABLE, DIR_0, DIR_1_3	and DIR_CMD				
V _{IH}	HIGH-level input voltage		0.625 × V _{CCA}	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	$0.35 \times V_{CCA}$	V
V _{SD_REF}						
V _{IH}	HIGH-level input voltage		1.5	-	3.63	V
V _{IL}	LOW-level input voltage		-0.3	-	+1.0	V

NXP Semiconductors IP4856CX25/C

SD 3.0-compliant memory card integrated dual voltage level translator

Table 10. Static characteristics ... continued

At recommended operating conditions; $T_{amb} = -40$ °C to +85 °C; voltages are referenced to GND (ground = 0 V); $C_{ext} = 1 \mu F$ at pin V_{LDO} ; unless otherwise specified.

Parameter	Conditions	Min	Typ[1]	Max	Unit
le output signals: CLK	_FB, CMD_H and DATA0_H to DATA3_H				
HIGH-level output voltage	$I_O = 2 \text{ mA}; V_I = V_{IH} \text{ (card side)}$	0.85 × V _{CCA}		-	V
LOW-level output voltage	$I_O = -2 \text{ mA}$; $V_I = V_{IL}$ (card side)	-	-	0.125 × V _{CCA}	V
le input signals: CMD_	SD and DATA0_SD to DATA3_SD	·	·	·	
HIGH-level input voltage	SEL = LOW (2.9 V interface)	0.625 × V _{O(reg)}	-	V _{O(reg)} + 0.3	V
	SEL = HIGH (1.8 V interface)	0.625 × V _{O(reg)}	-	V _{O(reg)} + 0.3	V
LOW-level input voltage	SEL = LOW (2.9 V interface)	-0.3	-	$0.35 \times V_{O(reg)}$	V
	SEL = HIGH (1.8 V interface)	-0.3	-	0.35 × V _{O(reg)}	V
le output signal		*	•	•	*
D, DATA0_SD to DATA3	_SD and CLK_SD				
HIGH-level output voltage	$I_O = 4$ mA; $V_I = V_{IH}$ (host side); SEL = LOW (2.9 V interface)	$\begin{array}{c} 0.85 \times \\ V_{O(reg)} \end{array}$	-	V _{O(reg)} + 0.3	V
	I _O = 2 mA; V _I = V _{IH} (host side); SEL = HIGH (1.8 V interface)	$0.85 \times V_{O(reg)}$	-	0.3 2.0 0.125 × V _{O(reg)}	V
LOW-level output voltage	$I_O = -4$ mA; $V_I = V_{IL}$ (host side); SEL = LOW (2.9 V interface)	-0.3	-		V
	$I_O = -2 \text{ mA}$; $V_I = V_{IL}$ (host side); SEL = HIGH (1.8 V interface)	-0.3	-	0.125 × V _{O(reg)}	V
al equivalent capacitano	ce				1
channel capacitance	$V_{I} = 0 \text{ V}; f_{i} = 1 \text{ MHz}; V_{SUPPLY} = 3.5 \text{ V}; V_{CCA} = 1.8 \text{ V}$	1			
	host side	-	3.5	V _{CCA} V _{O(reg)} + 0.3 V _{O(reg)} + 0.3 0.35 × V _{O(reg)} 0.35 × V _{O(reg)} 0.35 × V _{O(reg)} 0.125 × V _{O(reg)} 0.125 × V _{O(reg)} 0.125 ×	pF
	card side	-	5.0	10.0	pF
consumption	'	1			1
static supply current	ENABLE = HIGH (active mode); all inputs = HIGH; DIR = LOW				
	SEL = LOW (2.9 V interface)	-	-	100	μА
	SEL = HIGH (1.8 V interface)	-	-	100	μΑ
standby supply current	ENABLE = LOW (inactive mode)	-	-	1	μА
	HIGH-level output voltage LOW-level output voltage le input signals: CMD HIGH-level input voltage LOW-level input voltage LOW-level output voltage LOW-level output voltage LOW-level output voltage channel capacitance consumption static supply current		Country Coun	the output signals: CLK_FB, CMD_H and DATA0_H to DATA3_H HIGH-level output voltage LOW-level output voltage LOW-level output voltage Ele input signals: CMD_SD and DATA0_SD to DATA3_SD HIGH-level input voltage SEL = LOW (2.9 V interface) SEL = HIGH (1.8 V interface) Io = 2 mA; V ₁ = V _{1H} (host side); SEL = LOW (0.85 × VO(reg)) Io = 2 mA; V ₁ = V _{1H} (host side); SEL = HIGH (1.8 V interface) Io = 2 mA; V ₁ = V _{1L} (host side); SEL = LOW (2.9 V interface) Io = -2 mA; V ₁ = V _{1L} (host side); SEL = HIGH (1.8 V interface) Io = -2 mA; V ₁ = V _{1L} (host side); SEL = HIGH (-0.3 - 1.8 V interface) Io = -2 mA; V ₁ = V _{1L} (host side); SEL = HIGH (-0.3 - 1.8 V interface) Io = -2 mA; V ₁ = V _{1L} (host side); SEL = HIGH (-0.3 - 1.8 V interface) SEL = HIGH (1.8 V interface) SEL = HIGH (1.8 V interface) SEL = LOW (2.9 V interface) SEL = LOW (2.9 V interface) SEL = LOW (2.9 V interface) SEL = HIGH (1.8 V interface) SEL = LOW (1.8 V interface) SEL = HIGH (1.8 V interface) SEL = LOW (1.8 V interface)	the output signals: CLK_FB, CMD_H and DATA0_H to DATA3_H HIGH-level output voltage LOW-level output voltage Io = 2 mA; V ₁ = V _{IL} (card side) Io = -2 mA; V ₁ = V _{IL} (card side); SEL = LOW Io = -2 mA; V ₁ = V _{IL} (card side); SEL = LOW Io = -2 mA; V ₁ = V _{IL} (card side); SEL = LOW Io = -2 mA; V ₁ = V _{IL} (card side); SEL = LOW Io = -2 mA; V ₁ = V _{IL} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{IL} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{IL} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{IL} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{IL} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{IL} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side); SEL = HIGH Io = -2 mA; V ₁ = V _{1L} (card side)

^[1] Typical values are measured at T_{amb} = 25 °C.

^[2] Guaranteed by design and characterization.

^[3] EMI filter line capacitance per data channel from I/O driver to pin; C_{ch} is guaranteed by design.

12. Dynamic characteristics

12.1 Voltage regulator

Table 11. Voltage regulator

T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage reg	julator output pin: V _{LDO}		1			'
t _{startup(reg)}	regulator start-up time	$V_{CCA} = 1.8 \text{ V}; V_{SUPPLY} = 3.5 \text{ V};$ $C_{ext} = 1 \mu\text{F}; \text{ see } \frac{\text{Figure 5}}{Constant of the second of the$	-	-	100	μS
$t_{f(o)}$	output fall time	V _{O(reg)} = 2.9 V to 1.8 V; SEL = LOW to HIGH; see Figure 4	-	-	1	ms
$t_{r(o)}$	output rise time	V _{O(reg)} = 1.8 V to 2.9 V; SEL = HIGH to LOW; see Figure 4	-	-	100	μS

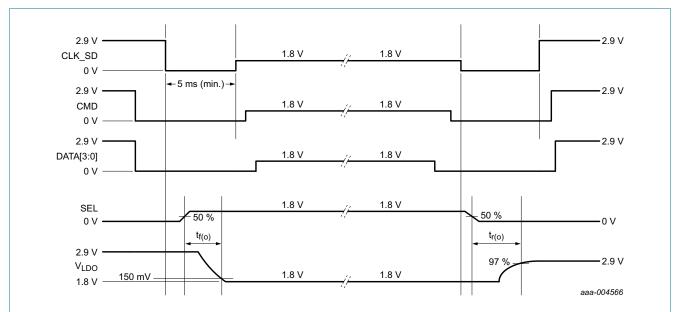
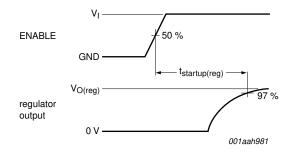
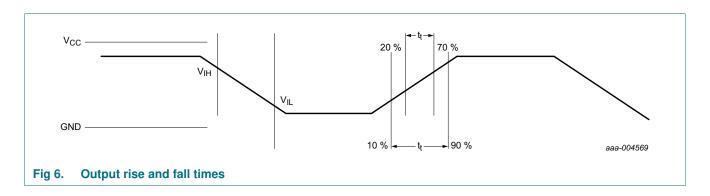
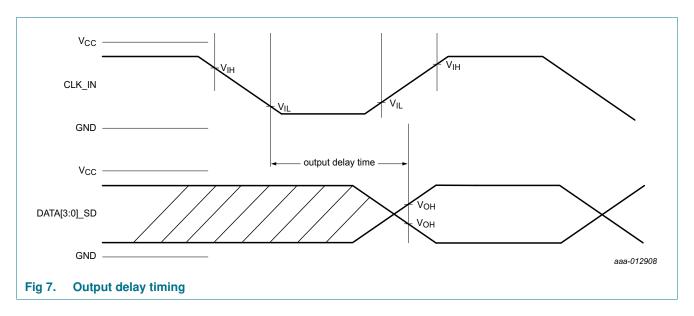



Fig 4. Regulator mode change timing

Measuring points: ENABLE signal at 0.5 V_{CCA} and regulator output signal at 0.97 $V_{O(reg)}$.

Fig 5. Regulator start-up time


12.2 Level translator


Table 12. Level translator dynamic characteristics

At recommended operating conditions; $V_{CCA} = 1.8 \text{ V}$; $T_{amb} = 25 \text{ °C}$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Host-side	transition times						
t _r	rise time	SEL = HIGH (1.8 V interface)	<u>[1]</u>	-	0.4	1.0	ns
t _f	fall time	SEL = HIGH (1.8 V interface)	<u>[1]</u>	-	0.4	1.0	ns
Card-side	transition times						
t _r	rise time	SEL = HIGH (1.8 V interface)	[2]	0.4	0.9	1.4	ns
t _f	fall time	SEL = HIGH (1.8 V interface)	[2]	0.4	0.9	1.4	ns
Host-side	to card-side propagation delay						
DATAx_H	to DATAx_SD, CMD_H to CMD_SI	D and CLK_IN to CLK_SD					
t _{pd}	propagation delay	SEL = HIGH (1.8 V interface)		-	2.4	3.5	ns
Host-side	to host-side propagation delay						
CLK_IN to	CLK_FB						
t _{pd}	propagation delay	SEL = HIGH (1.8 V interface)		-	4.8	7.0	ns
Card-side	to host-side propagation delay						
DATAx_SE	to DATAx_H and CMD_SD to CM	ID_H					
t _{pd}	propagation delay	SEL = HIGH (1.8 V interface)		-	2.4	3.5	ns

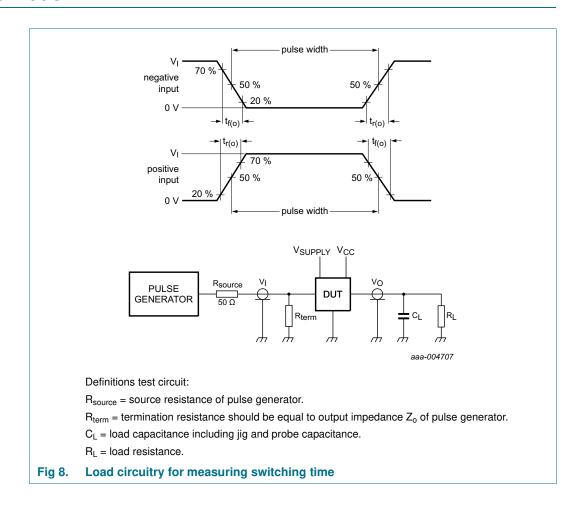
- [1] Transition between $V_{OL} = 0.35 \times V_{CCA}$ and $V_{OH} = 0.65 \times V_{CCA}$.
- [2] Transition between V_{OL} = 0.45 V and V_{OH} = 1.4 V.

12.3 ESD characteristic of pin write protect and card detect

Table 13. ESD characteristic of write protect and card detect

At recommended operating conditions; $T_{amb} = 25$ °C; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESD protection pins: WP and CD						
V_{BR}	breakdown voltage	TLP; I = 1 mA	-	8	-	V
r _{dyn}	dynamic resistance	positive transient [1]	-	0.5	-	Ω
		negative transient [1]	-	0.5	-	Ω


^[1] TLP according to ANSI-ESD STM5.5.1/IEC 62615 $Z_0 = 50~\Omega$; pulse width = 100 ns; rise time = 200 ps; averaging window = 50 ns to 80 ns.

IP4856CX25/C

SD 3.0-compliant memory card integrated dual voltage level translator

13. Test information

NXP Semiconductors

14. Package outline

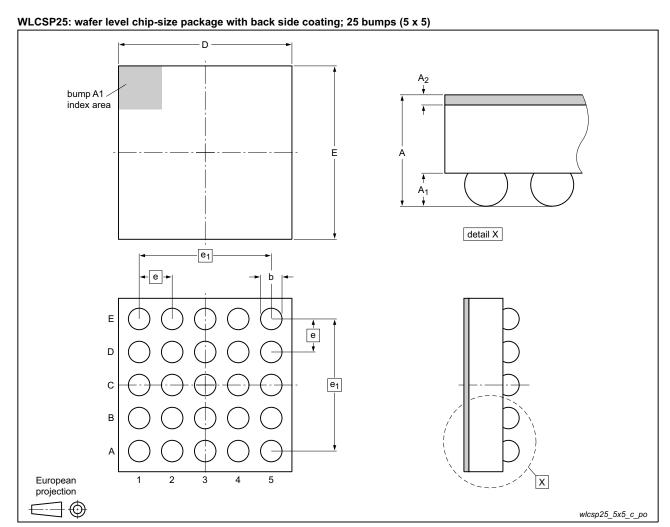


Fig 9. Package outline IP4856CX25/C (WLCSP25 with back side coating)

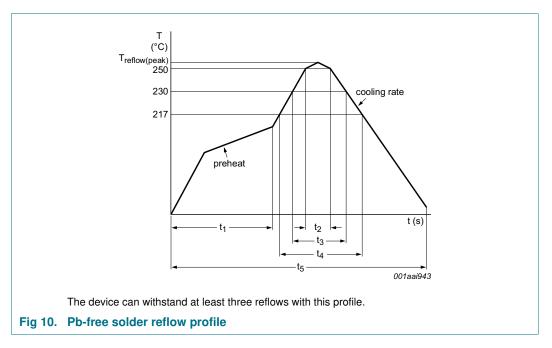
Table 14. Dimensions for Figure 9

Symbol	Min	Тур	Max	Unit
Α	0.47	0.51	0.55	mm
A ₁	0.18	0.20	0.22	mm
A_2	0.03	0.04	0.05	mm
b	0.23	0.25	0.27	mm
D	2.01	2.05	2.09	mm
Е	2.01	2.05	2.09	mm
е	-	0.4	-	mm
e ₁	-	1.6	-	mm

15. Design and assembly recommendations

15.1 PCB design guidelines

For optimum performance, use a Non-Solder Mask PCB Design (NSMD), also known as a copper-defined design, incorporating laser-drilled micro-vias connecting the ground pads to a buried ground-plane layer. This results in the lowest possible ground inductance and provides the best high frequency and ESD performance. For this case, refer to Table 15 for the recommended PCB design parameters.


Table 15. Recommended PCB design parameters

Parameter	Value or specification
PCB pad diameter	250 μm
Micro-via diameter	100 μm (0.004 inch)
Solder mask aperture diameter	325 μm
Copper thickness	20 μm to 40 μm
Copper finish	AuNi or OSP
PCB material	FR4

15.2 PCB assembly guidelines for Pb-free soldering

Table 16. Assembly recommendations

Parameter	Value or specification
Solder screen aperture diameter	290 μm
Solder screen thickness	100 μm (0.004 inch)
Solder paste: Pb-free	SnAg (3 % to 4 %) Cu (0.5 % to 0.9 %)
Solder to flux ratio	50 : 50
Solder reflow profile	see Figure 10

IP4856CX25_C

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

Table 17. Reflow soldering process characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{reflow(peak)}	peak reflow temperature		230	-	260	°C
t ₁	time 1	soak time	60	-	180	s
t ₂	time 2	time during T ≥ 250 °C	-	-	30	s
t ₃	time 3	time during T ≥ 230 °C	10	-	50	s
t ₄	time 4	time during T > 217 °C	30	-	150	s
t ₅	time 5		-	-	540	s
dT/dt	rate of change of	cooling rate	-	-	-6	°C/s
	temperature	preheat	2.5	-	4.0	°C/s

16. Abbreviations

Table 18. Abbreviations

Acronym	Description
DUT	Device Under Test
EMI	ElectroMagnetic Interference
ESD	ElectroStatic Discharge
FR4	Flame Retard 4
MMC	MultiMedia Card
NSMD	Non-Solder Mask PCB Design
OSP	Organic Solderability Preservation
PCB	Printed-Circuit Board
RoHS	Restriction of Hazardous Substances
SD	Secure Digital
WLCSP	Wafer-Level Chip-Scale Package

17. Revision history

Table 19. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
IP4856CX25_C v.2	20141015	Product data sheet	-	IP4856CX25 v.1
Modifications:	Product witho	removed		
	Product status	s changed		
IP4856CX25 v.1	20140602	Preliminary data sheet	-	-

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

IP4856CX25 C

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

NXP Semiconductors IP4856CX25/C

SD 3.0-compliant memory card integrated dual voltage level translator

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

20. Contents

1	General description 1
2	Features and benefits
3	Applications
4	Ordering information 1
5	Block diagram 2
6	Functional diagram 3
7	Pinning information 4
7.1	Pinning 4
7.2	Pin description 4
8	Functional description 5
8.1	Level translator 5
8.2	Enable and direction control 6
8.3	Integrated voltage regulator 6
8.4	Memory card voltage tracking
8.5	(reference select)
8.6	EMI filter
8.7	ESD protection
9	Limiting values 8
10	Recommended operating conditions 8
11	Static characteristics
12	Dynamic characteristics
12.1	Voltage regulator
12.2	Level translator
12.3	ESD characteristic of pin write protect and
	card detect
13	Test information
14	Package outline
15	Design and assembly recommendations 16
15.1	PCB design guidelines 16
15.2	PCB assembly guidelines for
	Pb-free soldering 16
16	Abbreviations
17	Revision history
18	Legal information19
18.1	Data sheet status
18.2	Definitions
18.3 18.4	Disclaimers
	Trademarks
19	Contact information
20	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.