

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel Stratix 10 FPGA IP User Guide

Updated for Intel® Quartus® Prime Design Suite: 18.0

UG-20071 | 2018.09.24 Latest document on the web: PDF | HTML

Contents

1. About the 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel® FPGA IP Core	3
1.1. Features	3
1.2. Device Family Support	
1.3. Device Speed Grade Support	5
1.4. Resource Utilization	
1.5. Release Information	6
2. Getting Started	7
2.1. Installing and Licensing Intel FPGA IP Cores	7
2.1.1. Intel FPGA IP Evaluation Mode	
2.2. Specifying the IP Core Parameters and Options	
2.3. Generated File Structure	
2.4. Integrating Your IP Core in Your Design	
2.4.1. Pin Assignments	
2.4.2. Adding the Transceiver PLL	
-	
3. Parameter Settings	14
4. Functional Description	17
4.1. Clocking and Reset Sequence	19
4.2. Timing Constraints	
4.3. Switching Operation Speed	21
5. Configuration Registers	23
5.1. Register Map	23
5.2. Register Definitions	23
6. Interface Signals	29
6.1. Clock and Reset Signals	30
6.2. Transceiver Mode and Operating Speed Signals	
6.3. Serial Interface Signals	32
6.4. GMII Signals	
6.5. XGMII Signals	
6.6. Avalon-MM Interface Signals	
6.7. Transceiver Status and Reconfiguration Signals	
6.8. Status Signals	
7. 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel Stratix 10 FPGA IP User Guid	le 41
A. Document Revision History for the 1G/2.5G/5G/10G Multi-rate Ethernet PHY	!
Intel Stratix 10 FPGA IP User Guide	42

1. About the 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel® FPGA IP Core

The 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel® FPGA IP core for Intel Stratix® 10 devices (L- and H-Tiles) implements the Ethernet protocol as defined in the *IEEE 802.3 2005 Standard*. It consists of a physical coding sublayer (PCS) function and an embedded physical media attachment (PMA). You can dynamically switch the PHY operating speed.

Note:

Intel FPGAs implement and support the required Media Access Control (MAC), PHY (PCS + PMA) IP to interface in a chip-to-chip or chip-to-module channel with external MGBASE-T and NBASE-T PHY standard devices. You are required to use an external PHY device to drive any copper media.

Related Information

- Introduction to Intel FPGA IP Cores
 - Provides general information about all Intel FPGA IP cores, including parameterizing, generating, upgrading, and simulating IP cores.
- Generating a Combined Simulator Setup Script
 - Create simulation scripts that do not require manual updates for software or IP version upgrades.
- Project Management Best Practices
 - Guidelines for efficient management and portability of your project and IP files.

1.1. Features

Table 1. 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP Core Features

Feature	Description	
Operating speeds	10M, 100M, 1G, 2.5G, 5G, and 10G.	
MAC-side interface	16-bit GMII for 10M/100M/1G/2.5G (MGBASE-T).	
	32-bit XGMII for 10M/100M/1G/2.5G/5G/10G (USXGMII/NBASE-T).	
	64-bit XGMII for 10G (MGBASE-T).	
Network-side interface	1.25 Gbps for 1G (MGBASE-T) and 10M/100M/1G (SGMII).	
	3.125 Gbps for 2.5G (MGBASE-T).	
	10.3125 Gbps for 10M/100M/1G/2.5G/5G/10G (USXGMII/NBASE-T) and 10G (MGBASE-T).	
Avalon® Memory-Mapped (Avalon-MM) interface	Provides access to the configuration registers of the PHY.	
Physical Coding Sublayer (PCS) function	1000BASE-X for 1G and 2.5G.	
	continued	

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2015 Registered

Feature	Description
	10GBASE-R for 10G.
	USXGMII PCS for 10M/100M/1G/2.5G/5G/10G (USXGMII).
	SGMII (10M/100M/1G) for 1G/2.5 and 1G/2.5/10G (MGBASE-T).
Auto-negotiation	Implements IEEE 802.3 clause 37. Supported in 1GbE only. USXGMII Auto-negotiation supported in the 10M/100M/1G/2.5G/5G/10G (USXGMII/NBASE-T) configuration. SGMII Auto-negotiation supported in the 10M/100M/1G (SGMII) configuration.
IEEE 1588v2	Provides the required latency to the MAC if the MAC enables the IEEE 1588v2 feature. Supported: 2.5G 1G/2.5G 1G/2.5G/10G (MGBASE-T) 10M/100M/1G/2.5G/5G/10G (USXGMII) Note: For the 10M/100M/1G/2.5G/5G/10G (USXGMII) configuration, the provided latency is applicable only for 100M, 1G, 2.5G, 5G, and 10G modes. Not Supported: 10M/100M/1G/2.5G 10M/100M/1G/2.5G/10G (MGBASE-T)
Sync-E	Provides the clock for Sync-E implementation.

IEEE website

For more information on IEEE 802.3.2005 and IEEE 1588 standards.

1.2. Device Family Support

Table 2. Intel FPGA IP Core Device Support Levels

Device Support Level	Definition
Advance	The IP core is available for simulation and compilation for this device family. Timing models include initial engineering estimates of delays based on early post-layout information. The timing models are subject to change as silicon testing improves the correlation between the actual silicon and the timing models. You can use this IP core for system architecture and resource utilization studies, simulation, pinout, system latency assessments, basic timing assessments (pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O standards tradeoffs).
Preliminary	The IP core is verified with preliminary timing models for this device family. The IP core meets all functional requirements, but might still be undergoing timing analysis for the device family. It can be used in production designs with caution.
Final	The IP core is verified with final timing models for this device family. The IP core meets all functional and timing requirements for the device family and can be used in production designs.

Table 3. Device Family Support for the 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP Core

Device Family	Support Level
Intel Stratix 10	Advance

1.3. Device Speed Grade Support

Table 4. Slowest Supported Device Speed Grades

Consid Mode	Supported Speed Grade		
Speed Mode	With 1588 Feature	Without 1588 Feature	
2.5G	E2, I2	E3, I3	
1G/2.5G	E2, I2	E3, I3	
10M/100M/1G/2.5G	-	E3, I3	
1G/2.5G/10G (MGBASE-T)	E2, I2	E3, I3	
10M/100M/1G/2.5G/10G (MGBASE-T)	-	E3, I3	
10M/100M/1G/2.5G/5G/10G (USXGMII)	E2, I2	E3, I3	

1.4. Resource Utilization

The following estimates are obtained by compiling the PHY IP core for Intel Stratix 10 devices using Intel Quartus $^{\circledR}$ Prime software.

Table 5. Resource Utilization

Speed	ALMs	ALUTs	Logic Registers	Memory Block (M20K)
1G/2.5G	790	940	1570	2
1G/2.5G with IEEE 1588v2 enabled	1770	2390	3030	2
10M/100M/1G/2.5G	810	980	1610	2
10M/100M/1G/2.5G/10G (MGBASE-T)	1440	1790	2640	6
1G/2.5G/10G (MGBASE-T)	1390	1740	2640	6
1G/2.5G/10G (MGBASE-T) with IEEE 1588v2 enabled	3830	4630	5960	6
10M/100M/1G/2.5G/5G/10G (USXGMII)	920	1120	1830	3
10M/100M/1G/2.5G/5G/10G (USXGMII) with IEEE 1588v2 enabled	1760	2540	3510	4

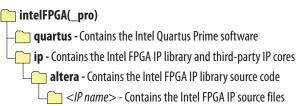
UG-20071 | 2018.09.24

1.5. Release Information

Table 6. Release Information

Item	Description	
Version	Intel Quartus Prime Pro Edition 18.0	
Release Date	2018.05.07	
Ordering Codes	IP-10GMRPHY	

2. Getting Started


The following section explains how to install, parameterize, simulate, and initialize the 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core.

2.1. Installing and Licensing Intel FPGA IP Cores

The Intel Quartus Prime software installation includes the Intel FPGA IP library. This library provides many useful IP cores for your production use without the need for an additional license. Some Intel FPGA IP cores require purchase of a separate license for production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a full production IP core license. You only need to purchase a full production license for licensed Intel IP cores after you complete hardware testing and are ready to use the IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 1. IP Core Installation Path

Table 7. IP Core Installation Locations

Location	Software	Platform
<pre><drive>:\intelFPGA_pro\quartus\ip\altera</drive></pre>	Intel Quartus Prime Pro Edition	Windows*
<pre><home directory="">:/intelFPGA_pro/quartus/ip/altera</home></pre>	Intel Quartus Prime Pro Edition	Linux*

2.1.1. Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP cores in simulation and hardware before purchase. Intel FPGA IP Evaluation Mode supports the following evaluations without additional license:

- Simulate the behavior of a licensed Intel FPGA IP core in your system.
- Verify the functionality, size, and speed of the IP core quickly and easily.
- Generate time-limited device programming files for designs that include IP cores.
- Program a device with your IP core and verify your design in hardware.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2015 Registered

Intel FPGA IP Evaluation Mode supports the following operation modes:

- Tethered—Allows running the design containing the licensed Intel FPGA IP indefinitely with a connection between your board and the host computer. Tethered mode requires a serial joint test action group (JTAG) cable connected between the JTAG port on your board and the host computer, which is running the Intel Quartus Prime Programmer for the duration of the hardware evaluation period. The Programmer only requires a minimum installation of the Intel Quartus Prime software, and requires no Intel Quartus Prime license. The host computer controls the evaluation time by sending a periodic signal to the device via the JTAG port. If all licensed IP cores in the design support tethered mode, the evaluation time runs until any IP core evaluation expires. If all of the IP cores support unlimited evaluation time, the device does not time-out.
- Untethered—Allows running the design containing the licensed IP for a limited time. The IP core reverts to untethered mode if the device disconnects from the host computer running the Intel Quartus Prime software. The IP core also reverts to untethered mode if any other licensed IP core in the design does not support tethered mode.

When the evaluation time expires for any licensed Intel FPGA IP in the design, the design stops functioning. All IP cores that use the Intel FPGA IP Evaluation Mode time out simultaneously when any IP core in the design times out. When the evaluation time expires, you must reprogram the FPGA device before continuing hardware verification. To extend use of the IP core for production, purchase a full production license for the IP core.

You must purchase the license and generate a full production license key before you can generate an unrestricted device programming file. During Intel FPGA IP Evaluation Mode, the Compiler only generates a time-limited device programming file (ct name>_time_limited.sof) that expires at the time limit.

Figure 2. Intel FPGA IP Evaluation Mode Flow

Note: Refer to each IP core's user guide for parameterization steps and implementation details.

Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes first-year maintenance and support. You must renew the maintenance contract to receive updates, bug fixes, and technical support beyond the first year. You must purchase a full production license for Intel FPGA IP cores that require a production license, before generating programming files that you may use for an unlimited time. During Intel FPGA IP Evaluation Mode, the Compiler only generates a time-limited device programming file (project name>_time_limited.sof) that expires at the time limit. To obtain your production license keys, visit the Self-Service Licensing Center or contact your local Intel FPGA representative.

The Intel FPGA Software License Agreements govern the installation and use of licensed IP cores, the Intel Quartus Prime design software, and all unlicensed IP cores.

- Intel Quartus Prime Licensing Site
- Intel FPGA Software Installation and Licensing

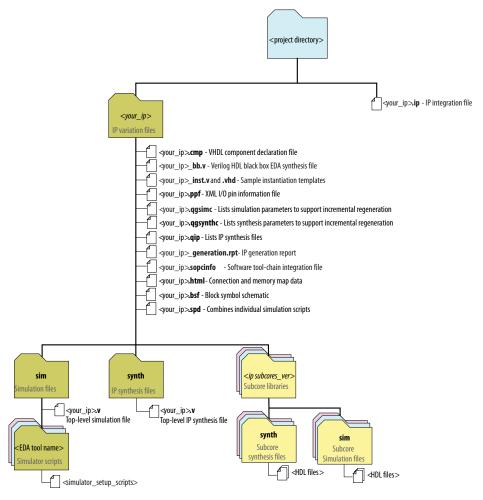
2.2. Specifying the IP Core Parameters and Options

The 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP parameter editor allows you to quickly configure your custom IP variation. Use the following steps to specify IP core options and parameters in the Intel Quartus Prime Pro Edition software:

- In the Intel Quartus Prime Pro Edition, click File ➤ New Project Wizard to create
 a new Intel Quartus Prime project, or File ➤ Open Project to open an existing
 Intel Quartus Prime project. The wizard prompts you to specify a device.
- In the IP Catalog (Tools ➤ IP Catalog), locate and double-click 1G/
 2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core to customize. The New IP Variant window appears.
- 3. Specify a top-level name for your custom IP variation. The parameter editor saves the IP variation settings in a file named <your_ip>.ip.
- 4. Click **Create**. The parameter editor appears.
- 5. Specify the parameters for your IP core variation in the parameter editor. Refer to *Parameter Settings* for information about specific IP core parameters.
- 6. Optionally, to generate a MAC+PHY simulation testbench or compilation and hardware design example, follow the instructions in the Low Latency Ethernet 10G MAC Intel Stratix 10 FPGA IP Design Example User Guide.
- 7. Click **Generate HDL**. The **Generation** dialog box appears.
- 8. Specify output file generation options, and then click **Generate**. The IP variation files generate according to your specifications.
- 9. Click **Finish**. The parameter editor adds the top-level .ip file to the current project automatically. If you are prompted to manually add the .ip file to the project, click **Project** > **Add/Remove Files in Project** to add the file.
- 10. After generating and instantiating your IP variation, make appropriate pin assignments to connect ports.

Related Information

- Low Latency Ethernet 10G MAC Intel FPGA IP User Guide
- Low Latency Ethernet 10G MAC Intel Stratix 10 FPGA IP Design Example User Guide
- Parameter Settings on page 14


2.3. Generated File Structure

The Intel Quartus Prime Pro Edition software generates the following IP core output file structure.

Figure 3. IP Core Generated Files

Table 8. IP Core Generated Files

File Name	Description
<pre><your_ip>.ip</your_ip></pre>	The Platform Designer system or top-level IP variation file. <your_ip> is the name that you give your IP variation.</your_ip>
<pre><your_ip>.cmp</your_ip></pre>	The VHDL Component Declaration (.cmp) file is a text file that contains local generic and port definitions that you can use in VHDL design files. This IP core does not support VHDL. However, the Intel Quartus Prime Pro Edition software generates this file.
<pre><your_ip>.html</your_ip></pre>	A report that contains connection information, a memory map showing the address of each slave with respect to each master to which it is connected, and parameter assignments.
<pre><your_ip>_generation.rpt</your_ip></pre>	IP or Platform Designer generation log file. A summary of the messages during IP generation.
<pre><your_ip>.qgsimc</your_ip></pre>	Lists simulation parameters to support incremental regeneration.
<pre><your_ip>.qgsynthc</your_ip></pre>	Lists synthesis parameters to support incremental regeneration.
	continued

File Name	Description	
<pre><your_ip>.qip</your_ip></pre>	Contains all the required information about the IP component to integrate and compile the IP component in the Intel Quartus Prime software.	
<pre><your_ip>.sopcinfo</your_ip></pre>	Describes the connections and IP component parameterizations in your Platform Designer system. You can parse its contents to get requirements when you develop software drivers for IP components.	
	Downstream tools such as the Nios® II tool chain use this file. The .sopcinfo file and the system.h file generated for the Nios II tool chain include address map information for each slave relative to each master that accesses the slave. Different masters may have a different address map to access a particular slave component.	
<pre><your_ip>.csv</your_ip></pre>	Contains information about the upgrade status of the IP component.	
<pre><your_ip>.bsf</your_ip></pre>	A Block Symbol File (. bsf) representation of the IP variation for use in Intel Quartus Prime Block Diagram Files (. bdf).	
<pre><your_ip>.spd</your_ip></pre>	Required input file for ip-make-simscript to generate simulation scripts for supported simulators. The .spd file contains a list of files generated for simulation, along with information about memories that you can initialize.	
<pre><your_ip>.ppf</your_ip></pre>	The Pin Planner File (.ppf) stores the port and node assignments for IP components created for use with the Pin Planner.	
<pre><your_ip>_bb.v</your_ip></pre>	You can use the Verilog black-box (_bb.v) file as an empty module declaration for use as a black box.	
<pre><your_ip>_inst.v or _inst.vhd</your_ip></pre>	HDL example instantiation template. You can copy and paste the contents of this file into your HDL file to instantiate the IP variation. This IP core does not support VHDL. However, the Intel Quartus Prime Pro Edition software generates the _inst.vhd file.	
<pre><your_ip>.v</your_ip></pre>	HDL files that instantiate each submodule or child IP core for synthesis or simulation.	
mentor/	Contains a ModelSim* script msim_setup.tcl to set up and run a simulation.	
aldec/	Contains a Riviera-PRO* script rivierapro_setup.tcl to setup and run a simulation.	
synopsys/vcs/	Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.	
synopsys/vcsmx/	Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to set up and run a VCS MX* simulation.	
cadence/	Contains a shell script ncsim_setup.sh and other setup files to set up and run an NCSim* simulation.	
submodules/	Contains HDL files for the IP core submodules.	
<pre><child cores="" ip="">/</child></pre>	For each generated child IP core directory, Platform Designer generates synth/ and sim/ sub-directories.	

2.4. Integrating Your IP Core in Your Design

2.4.1. Pin Assignments

When you integrate your 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core instance in your design, you must make appropriate pin assignments. While compiling the IP core alone, you can create virtual pins to avoid making specific pin assignments for top-level signals. When you are ready to map the design to hardware, you can change to the correct pin assignments.

2.4.2. Adding the Transceiver PLL

1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core requires an external PLL to drive TX serial clock, in order to compile and to function corrrectly in hardware. You must instantiate and connect ATX PLL/fPLL IP core to the 1G/2.5G/5G/10G Multi-rate Ethernet PHY IP core.

You can create an external transceiver PLL from the IP Catalog. Select the **Intel Stratix 10 L-Tile/H-Tile Transceiver ATX PLL** core or **Intel Stratix 10 L-Tile/H-Tile fPLL** core.

Table 9. Instantiate TX PLL

Speed	Reference Clock Frequency (MHz)	PLL Output Clock (MHz)
1G	125	625
2.5G	125	1562.5
10G	644.53125/322.265625	5156.25

Related Information

PLLs and Clock Networks

Provides more information about the PLLs for the Intel Stratix 10 L- and H-Tile Transceiver PHY.

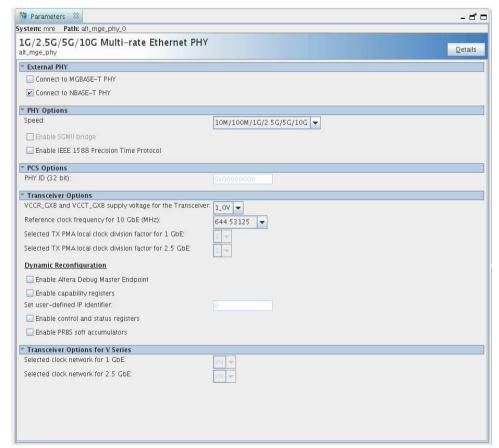
2.4.3. Adding the Intel Stratix 10 Transceiver PHY Reset Controller

You must add an Intel Stratix 10 Transceiver PHY Reset Controller IP core to your design, and connect it to the 1G/2.5/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core reset signals. This block implements a reset sequence that resets the device transceiver correctly.

You can use the IP Catalog to create a transceiver PHY reset controller.

Related Information

- Low Latency Ethernet 10G MAC Intel FPGA IP User Guide
- Low Latency Ethernet 10G MAC Intel Stratix 10 FPGA IP Design Example User Guide
- Resetting Transceiver Channels


Provides more information about resetting transceiver channels for the Intel Stratix 10 L- and H-Tile Transceiver PHY.

3. Parameter Settings

You can select the 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core for Intel Stratix 10 devices from the Intel Quartus Prime Pro Edition IP catalog. To customize the PHY IP core, specify the parameters in the IP parameter editor. The parameter editor dynamically enables the parameter options that apply to the selected operating speed.

Figure 4. IP Parameter Editor

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

9001:2015

Registered

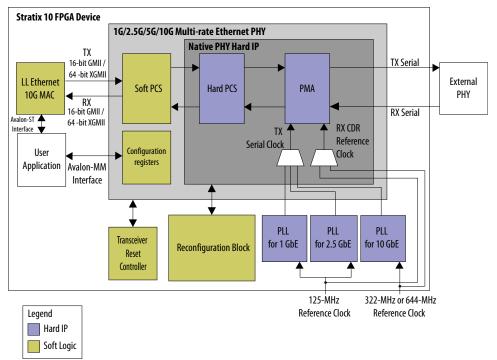
Table 10. 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP Core Parameters

Parameter	Options	Description			
	External F	PHY			
Connect to MGBASE-T PHY	On, Off	Select this option when the external PHY is MGBASE-T compatible. This parameter is enabled for 2.5G, 1G/2.5G, and 1G/2.5G/10G (MGBASE-T) modes.			
Connect to NBASE-T PHY	On, Off	Select this option when the external PHY is NBASE-T compatible. This parameter is enabled for 10M/100M/1G/2.5G/5G/10G (USXGMII) modes.			
	PHY Option	ons			
Speed	2.5G 1G/2.5G 1G/2.5G/10G 10M/100M/1G/ 2.5G/5G/10G	The operating speed of the PHY.			
Enable SGMII bridge	On, Off	Select this parameter to enable SGMII 10-Mbps/100-Mbps/1-Gbps. You can enable this parameter for 1G/2.5G, and 1G/2.5G/10G (MGBASE-T) modes.			
Enable IEEE 1588 Precision Time Protocol	On, Off	Select this parameter for the PHY to provide latency information to the MAC. The MAC requires this information if it enables the IEEE 1588v2 feature. You can enable this parameter for 2.5G, 1G/2.5G, 1G/2.5G/10G (MGBASE-T), and 10M/100M/1G/2.5G/5G/10G (USXGMII) modes provided that the SGMII bridge is disabled in 1G/2.5G and 1G/2.5G/10G (MGBASE-T) modes.			
	PCS Option	ons			
PHY ID (32 bit)	32-bit value	An optional 32-bit unique identifier: Bits 3 to 24 of the Organizationally Unique Identifier (OUI) assigned by the IEEE G-bit model number 4-bit revision number The default value is 0x00000000.			
	Transceiver (Options			
Supply voltage for the 1.0 V, 1.1 V transceiver supply Use 1.1 V setting if		This parameter specifies the VCCR_GXB and VCCT_GXB transceiver supply voltage. The default setting is 1.0 V. Use 1.1 V setting if the bank contains transceivers running at 15 Gbps or faster.			
Reference clock frequency for 10 GbE (MHz)	322.265625, 644.53125	Specify the frequency of the reference clock for 10GbE. This option is only available for 1G/2.5G/10G and 10M/100M/1G/2.5G/5G/10G (USXGMII) speed modes.			
Selected TX PMA local clock division factor for 1 GbE	1, 2, 4, 8	Select the TX local clock division factor for transceiver. The selection is used for 1G Ethernet.			
Selected TX PMA local clock division factor for 2.5 GbE	1, 2	Select the TX local clock division factor for transceiver. The selection is used for 2.5G Ethernet.			
	Dynamic Recon	figuration			
continued					

Parameter	Options	Description
Enable Altera Debug Master Endpoint	On, Off	When enabled, the Native PHY includes an embedded Altera Debug Master Endpoint (ADME) that connects internally Avalon-MM slave interface. The ADME can access the reconfiguration space of the transceiver. It can perform certain test and debug functions via JTAG using the System Console.
Enable capability registers	On, Off	Enables capability registers. These registers provide high-level information about the transceiver channel/PLL configuration.
Set user-defined IP identifier	User-specified	Sets a user-defined numeric identifier that can be read from the user_identifier offset when the capability registers are enabled.
Enable control and status registers	On, Off	Enables soft registers for reading status signals and writing control signals on the PHY /PLL interface through the ADME or reconfiguration interface.
Enable PRBS soft accumulators	On, Off	Enables soft logic to perform PRBS bit and error accumulation when using the hard PRBS generator and checker.

Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

More information on Altera Debug Master Endpoint (ADME).



4. Functional Description

The 1G/2.5G/5G/10G Multi-rate PHY Intel FPGA IP core for Intel Stratix 10 devices implements the 10M to 10Gbps Ethernet PHY in accordance with the IEEE 802.3 Ethernet Standard. This IP core handles the frame encapsulation and flow of data between a client logic and Ethernet network via a 10M to 10GbE PCS and PMA (PHY). You can use the Native PHY IP core to configure the transceiver PHY for your protocol implementation. Refer to the *Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide* for more information on using the Native PHY IP core.

Figure 5. Architecture of 2.5G, 1G/2.5G, 10M/100M/1G/2.5G, 1G/2.5G/10G, 10M/100M/1G/2.5G/10G (MGBASE-T) Configuration

In the transmit direction, the PHY encodes the Ethernet frame as required for reliable transmission over the media to the remote end. In the receive direction, the PHY passes frames to the MAC.

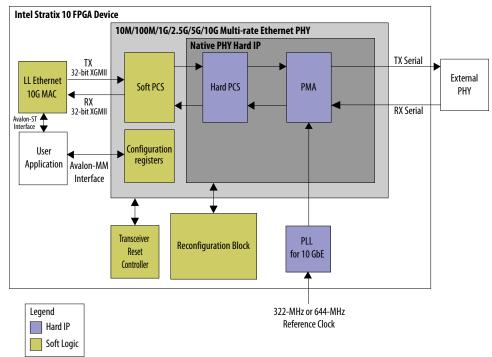
Note: You can generate the MAC and PHY design example using the Low Latency Ethernet 10G MAC Intel FPGA IP Parameter Editor.

The IP core includes the following interfaces:

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

9001:2015 Registered

- Datapath client-interface:
 - 10GbE—XGMII, 64 bits
 - 10M/100M/1G/2.5GbE-GMII, 16 bit
 - 10M/100M/1G/2.5G/5G/10G (USXGMII)—XGMII, 32 bits


For 1G/2.5/10G (MGBASE-T), select an interface based on the respective operating speed.

- Management interface—Avalon-MM host slave interface for PHY management.
- Datapath Ethernet interface with the following available options:
 - 10GbE—Single 10.3125 Gbps serial link
 - 2.5GbE—Single 3.125 Gbps serial link
 - 10M/100M/1GbE—Single 1.25 Gbps SGMII serial link
 - $-\ \ 10\mbox{M}/100\mbox{M}/1\mbox{G}/2.5\mbox{G}/5\mbox{G}/10\mbox{G}$ (USXGMII) —Single 10.3125 Gbps serial link

For 1G/2.5/10G (MGBASE-T), select an ethernet interface based on the respective operating speed.

 Transceiver PHY dynamic reconfiguration interface—an Avalon-MM interface to read and write the Intel Stratix 10 Native PHY IP core registers. This interface supports dynamic reconfiguration of the transceiver. It is used to configure the transceiver operating modes to switch to desired Ethernet operating speeds.

Figure 6. Architecture of 10M/100M/1G/2.5G/5G/10G (USXGMII) Configuration

The 10M/100M/1G/2.5G/5G/10G (USXGMII) configuration supports the following features:

- USXGMII—10M/100M/1G/2.5G/5G/10G speeds
- Full duplex data transmission
- USXGMII Auto-Negotiation

- Low Latency Ethernet 10G MAC Intel FPGA IP User Guide
- Low Latency Ethernet 10G MAC Intel Stratix 10 FPGA IP Design Example User Guide
- Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

4.1. Clocking and Reset Sequence

Clocking Requirements:

- For 64-bit XGMII, the 156.25 MHz clock must have zero ppm difference with reference clock of 10G transceiver PLL. Therefore, the 156.25 MHz clock must derived from the transceiver 10G reference clock for 1G/2.5G/10G (MGBASE-T) variant.
- For 32-bit XGMII, the 312.5 MHz clock must have zero ppm difference with reference clock of 10G transceiver PLL. Therefore, the 312.5 MHz clock must derived from the transceiver 10G reference clock for 10M/100M/1G/2.5G/5G/10G (USXGMII) variant.

Reset sequence for all configurations is handled by the transceiver reset controller. For 1G/2.5G and 1G/2.5G/10G (MGBASE-T), transceiver reset sequence is automatically triggered after completion of speed switching/reconfiguration in the MAC+PHY example design.

The 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core for Intel Stratix 10 devices supports up to ± 100 ppm clock frequency difference.

Related Information

Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

4.2. Timing Constraints

Constrain the PHY based on the fastest speed. For example, if you configure the PHY as 1G/2.5G, constrain it based on 2.5G.

Table 11. Timing Constraints

PHY Configuration	Constrain PHY for	
2.5G	2.5G datapath	
1G/2.5G	2.5G datapath	
1G/2.5G/10G (MGBASE-T)	10G and 1G/2.5G datapath	
10M/100M/1G/2.5G/5G/10G (USXGMII)	10G datapath	
10M/100M/1G/2.5G	2.5G datapath	
10M/100M/1G/2.5G/10G (SGMII/MGBASE-T)	10G and 1G/2.5G datapath	

When you configure the PHY in 1G/2.5G/10G (MGBASE-T) configuration, Intel recommends that you add the following constraints in the timing constraint file:

• Set false path for the clocks used for the different speed so that the Timing Analyzer ignores paths for clocks that are in different groups. For example:

where profile0, profile1, and profile2 are created by the transceiver native PHY Synopsys Design Constraint (SDC) for 1G, 2.5G, and 10G clocks respectively.

• Set false path from native PHY 10G clock to 1G/2.5G PHY logic and vice versa. Since the 1G/2.5G PHY logic is not running native PHY 10G clock, you do not need to ensure timing closure for the 1G/2.5G data path at 10G clock. For example:

where the path indicated by profile2 is associated to the native PHY 10G clock, whereas the alt_mge16_pcs_pma path indicates the 1G/2.5G PHY logic.

 Set false path from native PHY 1G and 2.5G clock to 10G PHY logic and vice versa. Since the 10G PHY logic is not running the native PHY 1G and 2.5G clocks, you do not need to ensure timing closure for the 10G data path at the native PHY 1G and 2.5G clocks. For example:

where the paths indicated by profile0 and profile1 are associated to the native PHY 1G and 2.5G clocks respectively, whereas the alt_mge_phy_xgmii_pcs path indicates the 10G PHY logic.

When you configure the PHY in 1G/2.5G configuration, Intel recommends that you add the following constraint in the timing constraint file:

 Set false path for the clocks used for the different speed so that the Timing Analyzer ignores paths for clocks that are in different groups. For example:

where profile0 and profile1 are created by the transceiver native PHY SDC for the 1G and 2.5G clocks respectively.

4.3. Switching Operation Speed

Table 12. Supported Operating Speed

PHY Configuratio ns	Features	10M	100M	1 G	2.5G	5 G	10G
	Protocol	_	_	_	1000BASE-X at 2.5x	_	_
2.5G	Transceiver Data Rate	_	_	_	3.125 Gbps	_	_
	MAC Interface	_	_	_	16-bit GMII @ 156.25 MHz	_	_
	Protocol	SGMII 100x data replication	SGMII 10x data replication	1000BASE- X / SGMII	1000BASE-X at 2.5x	_	_
10M/ 100M/1G/ 2.5G	Transceiver Data Rate	1.25 Gbps	1.25 Gbps	1.25 Gbps	3.125 Gbps	_	_
	MAC Interface	16-bit GMII @ 62.5 MHz	16-bit GMII @ 62.5 MHz	16-bit GMII @ 62.5 MHz	16-bit GMII @ 156.25 MHz	_	_
10M/	Protocol	SGMII	SGMII 10x data replication	1000BASE- X / SGMII	1000BASE-X at 2.5x	_	10GBASE-R
100M/1G/ 2.5G/10G (MGBASE-T)	Transceiver Data Rate	1.25 Gbps	1.25 Gbps	1.25 Gbps	3.125 Gbps	_	10.3125 Gbps
(MGDASL-1)	MAC Interface	16-bit GMII @ 62.5 MHz	16-bit GMII @ 62.5 MHz	16-bit GMII @ 62.5 MHz	16-bit GMII @ 156.25 MHz	_	64-bit XGMII @ 156.25 MHz
10M/ 100M/1G/ 2.5G/5G/10 G (USXGMII)	Protocol	10GBASE-R 1000x data replication	10GBASE-R 100x data replication	10GBASE-R 10x data replication	10GBASE-R 4x data replication	10GBASE-R 2x data replication	10GBASE-R No data replication
	Transceiver Data Rate ⁽¹⁾	10.3125 Gbps	10.3125 Gbps	10.3125 Gbps	10.3125 Gbps	10.3125 Gbps	10.3125 Gbps
	MAC Interface	32-bit XGMII @ 312.5 MHz	32-bit XGMII @ 312.5 MHz	32-bit XGMII @ 312.5 MHz	32-bit XGMII @ 312.5 MHz	32-bit XGMII @ 312.5 MHz	32-bit XGMII @ 312.5 MHz

You can change the PHY speed using the reconfiguration block in the MAC+PHY example design.

- 1. Initiates the speed change by writing to the corresponding register of the reconfiguration block. $^{(2)}$
- 2. The reconfiguration block performs the following steps:

⁽¹⁾ With oversampling for lower data rates.

- a. Sets the xcvr_mode signal of the 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core to the requested speed.
- b. Reads the generated .mif file for the configuration settings and configures the transceiver accordingly.
- c. Selects the corresponding transceiver PLL.
- d. Triggers the transceiver recalibration.
- 3. The reconfiguration block triggers the PHY reset through the transceiver reset controller.

- Low Latency Ethernet 10G MAC Intel FPGA IP User Guide
- Low Latency Ethernet 10G MAC Intel Stratix 10 FPGA IP Design Example User Guide
- Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide
- Register Definitions on page 23

⁽²⁾ You can change the speed within SGMII (10M/100M/1G) and USXGMII (10M/100M/1G/2.5G/5G/10G) through CSR. It doesn't require reconfiguration block.

5. Configuration Registers

5.1. Register Map

You can access the 16-bit/32-bit configuration registers $^{(3)}$ via the Avalon-MM interface.

Table 13. Register Map Overview

Address Range	Address Range Usage		Configuration	
0x00-0x1F	1000BASE-X/SGMII	16	2.5G, 1G/2.5G, 10M/ 100M/1G/2.5G, 10M/ 100M/1G/2.5G/10G (MGBASE-T), 1G/2.5G/10G (MGBASE-T)	
0x400-0x41F	USXGMII	32	10M/100M/1G/2.5G/5G/10G (USXGMII)	
0x461	Serial Loopback	32	10M/100M/1G/2.5G/5G/10G (USXGMII)	

5.2. Register Definitions

Observe the following guidelines when accessing the registers:

- Do not write to reserved or undefined registers.
- When writing to the registers, perform read-modify-write operation to ensure that reserved or undefined register bits are not overwritten.

Table 14. Types of Register Access

Access Definition	
RO	Read only.
RW	Read and write.
RWC	Read, write and clear. The user application writes 1 to the register bit(s) to invoke a defined instruction. The IP core clears the bit(s) upon executing the instruction.

 $^{^{(3)}}$ These registers are identical to the Intel Arria $^{(8)}$ 10 variation of 1G/2.5G/5G/10G Multi-rate Ethernet PHY Intel FPGA IP core.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Table 15. PHY Registers

Ox04 dev_ability Use this register to advertise the device abilities during auto-negotiation. Bits [13:12]: RF. Specify the remote fault. 00: No error. 01: Link failure. 10: Off-line. 11: Auto-negotiation error. Bits [8:7]: PS. Specify the PAUSE support. 00: No PAUSE. 01: Symmetric PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. All other bits are reserved. Dx05 (1000BASE-X RW 11 All device abilities of the link partner during auto-negotiation.	Address	Name	Description	Access	HW Rese Value
Bit[14]: LOOPBACK. Set this bit to 1 to enable loopback on the serial interface.	0x00	control	reset. The PHY clears the bit when the reset is completed.	RWC	0
Bit [12]: AUTO_NEGOTIATION_ENABLE. Set this bit to 1 to enable auto-negotiation.			Bit[14]: LOOPBACK. Set this bit to 1 to enable	RW	0
Bit [9]: RESTART_AUTO_NEGOTIATION. Set this bit to 1 to restart auto-negotiation. The PHY clears the bit as soon as auto-negotiation is restarted. All other bits are reserved.			to 1 to enable auto-negotiation. Auto-negotiation is supported only in 1GbE. Therefore, set this bit to 0 when you switch to a	RW	0
All other bits are reserved. All other bits are reserved.			Bit [9]: RESTART_AUTO_NEGOTIATION. Set this bit to 1 to restart auto-negotiation. The PHY clears the bit as soon as auto-negotiation is	RWC	0
Status					
Bit [3]: AUTO_NEGOTIATION_ABILITY. A value of "1" indicates that the PCS function supports autonegotiation. Bit [2]: LINK_STATUS. A value of "0" indicates that the link is lost. A value of "1" indicates that the link is lost. A value of "1" indicates that the link is established. All other bits are reserved. DX02:0x03	0x01	status	Bit [5]: AUTO_NEGOTIATION_COMPLETE. A value of	RO	0
the link is lost. A value of "1" indicates that the link is established. All other bits are reserved. Dx02:0x03 phy_identifier The value set in the PHY_IDENTIFIER parameter. Dx04 dev_ability Use this register to advertise the device abilities during auto-negotiation. Bits [13:12]: RF. Specify the remote fault. 00: No error. 01: Link failure. 10: Off-line. 11: Auto-negotiation error. Bits [8:7]: PS. Specify the PAUSE support. 00: No PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. RW 1 All other bits are reserved. The device abilities of the link partner during auto-negotiation. The device abilities of the link partner during auto-negotiation.			Bit [3]: AUTO_NEGOTIATION_ABILITY. A value of "1" indicates that the PCS function supports auto-	RO	1
0x02:0x03 phy_identifier The value set in the PHY_IDENTIFIER parameter. RO Value PHY_II TIFIE param 0x04 dev_ability Use this register to advertise the device abilities during auto-negotiation. Bits [13:12]: RF. Specify the remote fault. RW 00 volume in the period of the parameter. 0 0: No error. 0 0: Link failure. 1 0: Off-line. 1 1: Auto-negotiation error. Bits [8:7]: PS. Specify the PAUSE support. 0 0: No PAUSE. 1 0: Asymmetric PAUSE towards the link partner. 1 1: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. RW 1 All other bits are reserved. — — — 0x05 (1000BASE-X partner_ability The device abilities of the link partner during auto-negotiation.			the link is lost. A value of "1" indicates that the link is	RO	0
Ox04 dev_ability Use this register to advertise the device abilities during auto-negotiation. Bits [13:12]: RF. Specify the remote fault. 00: No error. 01: Link failure. 10: Off-line. 11: Auto-negotiation error. Bits [8:7]: PS. Specify the PAUSE support. 00: No PAUSE. 01: Symmetric PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. All other bits are reserved. Dx05 (1000BASE-X Partner_ability The device abilities of the link partner during auto-negotiation.			All other bits are reserved.	_	_
during auto-negotiation. Bits [13:12]: RF. Specify the remote fault. 00: No error. 10: Link failure. 10: Off-line. 11: Auto-negotiation error. Bits [8:7]: PS. Specify the PAUSE support. 00: No PAUSE. 10: Asymmetric PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. RW 1 All other bits are reserved.	0x02:0x03	phy_identifier	The value set in the PHY_IDENTIFIER parameter.	RO	Value of PHY_IDE TIFIER paramete
O0: No error. O1: Link failure. O1: Off-line. O1: Auto-negotiation error. Bits [8:7]: PS. Specify the PAUSE support. O0: No PAUSE. O1: Symmetric PAUSE. O1: Symmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. All other bits are reserved. DX05 (1000BASE-X) Partner_ability The device abilities of the link partner during auto-negotiation.	0x04	dev_ability		-	_
O0: No PAUSE. O1: Symmetric PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [5]: FD. Ensure that this bit is always set to 1. RW 1 All other bits are reserved. — — — Ox05 (1000BASE-X) partner_ability The device abilities of the link partner during autonegotiation. — — —		00: No error.01: Link failure.10: Off-line.	RW	00	
All other bits are reserved. — — — — Ox05 (1000BASE-X partner_ability partner_ability negotiation.		 00: No PAUSE. 01: Symmetric PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards 	RW	11	
0x05 partner_ability The device abilities of the link partner during autonegotiation.			Bit [5]: FD. Ensure that this bit is always set to 1.	RW	1
(1000BASE-X negotiation.			All other bits are reserved.	_	_
		partner_ability	,	_	_

UG-20071 | 2018.09.24

partner has received three consecutive matching ability values from the device. Bits [13:12]: RF. The remote fault. 00: No error. 10: Link failure. 10: Off-line. 11: Auto-negotiation error. Bits [8:7]: PS. The PAUSE support. 00: No PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards the link device. Bit [6]: HD. A value of "1" indicates that full-duplex is supported. All other bits are reserved. All other bits are reserved. Dit (11: 10]: COPPER_SPEED Link partner_ability 10: copper interface speed is 10 Mbps 10: copper interface speed is 10 Mbps 10: copper interface speed is 10 Glabit 11: reserved Bit [12]: COPPER_DUPLEX_STATUS Link partner capability: 11: copper interface is capable of full-duplex operation 0: copper interface is capable of full-duplex operation 10: copper interface is capable of full-duplex operation 10: copper interface is capable of full-duplex operation 11: copper interface is capable of full-duplex operation 12: copper interface is capable of full-duplex operation 13: copper interface is capable of full-duplex operation 14: copper interface is capable of full-duplex operation 15: copper interface is capable of full-duplex operation 16: copper interface is capable of full-duplex operation 17: copper interface is capable of full-duplex operation 18: [11: PAGE_RECEIVE. A value of "1" indicates that the partner. ability register has been updated. This bit is automatically cleared once it is read. 18: [11: PAGE_RECEIVE. A value of "1" indicates that the partner. ability register has been updated. This bit is automatically cleared once it is read.	Address	Name	Description	Access	HW Reset
			partner has received three consecutive matching	RO	0
Oo: No PAUSE.			00: No error.01: Link failure.10: Off-line.	RO	0
is supported. Bit [5]: FD. A value of "1" indicates that full-duplex is supported. All other bits are reserved. The device abilities of the link partner during autonegotiation. Bit [11:10]: COPPER_SPEED Link partner speed: 0 00: copper interface speed is 10 Mbps 1 01: copper interface speed is 100 Mbps 1 01: copper interface speed is 1 Gigabit 1 11: reserved Bit [12]: COPPER_DUPLEX_STATUS Link partner capability: 1 : copper interface is capable of full-duplex operation 0 : copper interface is capable of half-duplex operation Bit [14]: ACK. Link partner acknowledge. A value of 1 indicates that the device received three consecutive matching ability values from its link partner. Bit [15]: COPPER_LINK_STATUS Link partner status: 1: copper interface link is up 0: copper interface link is down All other bits are reserved. The PCS capabilities and auto-negotiation status. RO Comparison The PCS capabilities and auto-negotiation status. RO Comparison Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO Comparison Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO Comparison RO Comparison All other bits are reserved. RO Comparison Compariso			 00: No PAUSE. 01: Symmetric PAUSE. 10: Asymmetric PAUSE towards the link partner. 11: Asymmetric and symmetric PAUSE towards 	RO	0
Supported. All other bits are reserved. DX05 (SGMII mode) Partner_ability Bit [11:10]: COPPER_SPEED Link partner speed: 0: 00: copper interface speed is 10 Mbps 10: copper interface speed is 100 Mbps 10: copper interface speed is 10 Gigabit 11: reserved Bit [12]: COPPER_DUPLEX_STATUS Link partner capability: 1: copper interface is capable of full-duplex operation Bit [14]: ACK. Link partner acknowledge. A value of 1 indicates that the device received three consecutive matching ability values from its link partner. Bit [15]: COPPER_LINK_STATUS Link partner status: 1: copper interface link is up 0: copper interface link is up 1: copper interface link is up 1: copper interface link is down All other bits are reserved. The PCS capabilities and auto-negotiation status. Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_BABLE. RO OXO6 Competition Divided the partner ability register has been updated. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_BABLE. RO OXO6 DXO6 DX				RO	0
Dx05 (SGMII mode) partner_ability The device abilities of the link partner during autonegotiation. Bit [11:10]: COPPER_SPEED RO O				RO	0
negotiation. Bit [11:10]: COPPER_SPEED RO 0 Link partner speed: • 00: copper interface speed is 10 Mbps • 01: copper interface speed is 10 Mbps • 10: copper interface speed is 10 Mbps • 10: copper interface speed is 1 Gigabit • 11: reserved Bit [12]: COPPER_DUPLEX_STATUS Link partner capability: • 1: copper interface is capable of full-duplex operation • 0: copper interface is capable of half-duplex operation Bit [14]: ACK. Link partner acknowledge. A value of 1 indicates that the device received three consecutive matching ability values from its link partner. Bit [15]: COPPER_LINK_STATUS Link partner status: • 1: copper interface link is up • 0: copper interface link is up • 0: copper interface link is down All other bits are reserved. Ox06 an_expansion The PCS capabilities and auto-negotiation status. Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO			All other bits are reserved.	_	_
Link partner speed: • 00: copper interface speed is 10 Mbps • 01: copper interface speed is 100 Mbps • 10: copper interface speed is 1 Gigabit • 11: reserved Bit [12]: COPPER_DUPLEX_STATUS Link partner capability: • 1: copper interface is capable of full-duplex operation • 0: copper interface is capable of half-duplex operation Bit [14]: ACK. Link partner acknowledge. A value of 1 indicates that the device received three consecutive matching ability values from its link partner. Bit [15]: COPPER_LINK_STATUS Link partner status: • 1: copper interface link is up • 0: copper interface link is down All other bits are reserved. The PCS capabilities and auto-negotiation status. Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO COMMITTED RO COMMITTED		partner_ability		_	_
Link partner capability: 1: copper interface is capable of full-duplex operation 0: copper interface is capable of half-duplex operation Bit [14]: ACK. Link partner acknowledge. A value of 1 indicates that the device received three consecutive matching ability values from its link partner. Bit [15]: COPPER_LINK_STATUS Link partner status: 1: copper interface link is up 0: copper interface link is down All other bits are reserved. The PCS capabilities and auto-negotiation status. Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO Constituting the partner applied to the partner ability register has been updated. This bit is automatically cleared once it is read.			Link partner speed: • 00: copper interface speed is 10 Mbps • 01: copper interface speed is 100 Mbps • 10: copper interface speed is 1 Gigabit	RO	00
indicates that the device received three consecutive matching ability values from its link partner. Bit [15]: COPPER_LINK_STATUS Link partner status: 1: copper interface link is up 0: copper interface link is down All other bits are reserved. The PCS capabilities and auto-negotiation status. Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO			Link partner capability: 1: copper interface is capable of full-duplex operation 0: copper interface is capable of half-duplex	RO	0
Link partner status: 1: copper interface link is up 0: copper interface link is down All other bits are reserved. The PCS capabilities and auto-negotiation status. Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO			indicates that the device received three consecutive	RO	0
Ox06 an_expansion The PCS capabilities and auto-negotiation status. — — — Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO CO			Link partner status: 1: copper interface link is up	RO	0
Bit [1]: PAGE_RECEIVE. A value of "1" indicates that the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO			All other bits are reserved.		_
the partner_ability register has been updated. This bit is automatically cleared once it is read. Bit [0]: LINK_PARTNER_AUTO_NEGOTIATION_ABLE. RO	0x06	an_expansion	The PCS capabilities and auto-negotiation status.		_
5.([0], 22111.21.0.10_1.2.001212.0			the partner_ability register has been updated. This	RO	0
auto-negotiation.			A value of "1" indicates that the link partner supports	RO	0