: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

IPS031(S)

FULLY PROTECTED POWER MOSFET SWITCH

Features

- Over temperature shutdown
- Over current shutdown
- Active clamp
- Low current \& logic level input
- E.S.D protection

Description

The IPS031/IPS031S are fully protected three terminal SMART POWER MOSFETs that feature over-current, over-temperature, ESD protection and drain to source active clamp.These devices combine a HEXFET ${ }^{\circledR}$ POWER MOSFET and a gate driver. They offer full protection and high reliability required in harsh environments. The driver allows short switching times and provides efficient protection by turning OFF the power MOSFET when the temperature exceeds $165^{\circ} \mathrm{C}$ or when the drain current reaches 12A. The device restarts once the input is cycled. The avalanche capability is significantly enhanced by the active clamp and covers most inductive load demagnetizations.

Typical Connection

Product Summary

$\mathrm{R}_{\mathrm{ds}(\text { on })}$	$60 \mathrm{~m} \Omega$ (max)
$\mathrm{V}_{\text {clamp }}$	50 V
$\mathrm{I}_{\text {shutdown }}$	12 A
$\mathrm{~T}_{\text {on }} / \mathrm{Toff}$	$1.5 \mu \mathrm{~s}$

Packages

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to SOURCE lead. (TAmbient $=25^{\circ} \mathrm{C}$ unless otherwise specified). PCB mounting uses the standard footprint with $70 \mu \mathrm{~m}$ copper thickness.

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V_{ds}	Maximum drain to source voltage	-	47	V	
$V_{\text {in }}$	Maximum input voltage	-0.3	7		
lin, max	Maximum IN current	-10	+10	mA	
Isd cont.	Diode max. continuous current (1) rth $=62^{\circ} \mathrm{C} / \mathrm{W} \quad$ IPS031	-	2.8	A	TO220 free air
	rth $=5^{\circ} \mathrm{C} / \mathrm{W}$ IPS031	-	18		TO220 with Rth $=5^{\circ} \mathrm{C} / \mathrm{W}$
	rth $=80^{\circ} \mathrm{C} / \mathrm{W}$ IPS031S	-	2.2		SMD220 Std. footprint
Isd pulsed	Diode max. pulsed current ${ }^{(1)}$	-	18		
Pd	Maximum power dissipation ${ }^{(1)}$ (rth $=62^{\circ} \mathrm{C} / \mathrm{W}$) IPS031	-	2	W	
	(rth $=80^{\circ} \mathrm{C} / \mathrm{W}$) IPS031S	-	1.56		
ESD1	Electrostatic discharge voltage (Human Body)	-	4	kV	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1500 \Omega$,
ESD2	Electrostatic discharge voltage (Machine Model)	-	0.5		$\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega, \mathrm{~L}=10 \mu \mathrm{H}$
T stor.	Max. storage temperature	-55	150	${ }^{\circ} \mathrm{C}$	
T_{j} max.	Max. junction temperature	-40	+150		
Tlead	Lead temperature (soldering, 10 seconds)	-	300		

Thermal Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
Rth 1	Thermal resistance free air	-	60	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	TO-220
Rth 2	Thermal resistance junction to case	-	3	-		
Rth 1	Thermal resistance with standard footprint	-	80	-		D2PAK (SMD220)
Rth 2	Thermal resistance with 1" square footprint	-	60	-		
Rth 3	Thermal resistance junction to case	-	3	-		

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
V_{ds} (max)	Continuous drain to source voltage	-	35	V
$\mathrm{V}_{\text {IH }}$	High level input voltage	4	6	
VIL	Low level input voltage	0	0.5	
$\begin{aligned} & \text { Ids } \\ & \text { Tamb }=85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Continuous drain current } \\ & \quad \text { (TAmbient }=85^{\circ} \mathrm{C}, \mathrm{IN}=5 \mathrm{~V}, \mathrm{rth}=60^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Tj}=125^{\circ} \mathrm{C} \text {) IPS031 } \end{aligned}$	-	3.1	A
	(TAmbient $=85^{\circ} \mathrm{C}, \mathrm{IN}=5 \mathrm{~V}, \mathrm{rth}=80^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Tj}=125^{\circ} \mathrm{C}$) IPS031S	-	2.8	
R ${ }_{\text {in }}$	Recommended resistor in series with IN pin	0.2	5	$\mathrm{k} \Omega$
Tr-in(max)	Max recommended rise time for IN signal (see fig. 2)	-	1	$\mu \mathrm{S}$
Fr - $\mathrm{sc}{ }^{(2)}$	Max. frequency in short circuit condition (Vcc $=14 \mathrm{~V}$)	0	1	kHz

(1) Limited by junction temperature (pulsed current limited also by internal wiring)
(2) Operations at higher switching frequencies is possible. See Application. Notes.

Static Electrical Characteristics

($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$\mathrm{R}_{\text {ds }}(\mathrm{on})$	ON state resistance $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	20	45	60	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{ds}}=1 \mathrm{~A}$
Rds(on)	ON state resistance $\mathrm{Tj}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-	75	100		
Idss @Tj=25으․	Drain to source leakage current	0	0.5	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Idss2 } \\ @ T j=25^{\circ} \mathrm{C} \end{array} \end{array}$	Drain to source leakage current	0	5	50		$\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$
V clamp 1	Drain to source clamp voltage 1	47	52	56	V	$\mathrm{I}_{\mathrm{d}}=20 \mathrm{~mA}$ (see Fig. $3 \& 4$)
V clamp 2	Drain to source clamp voltage 2	50	53	60		$\mathrm{I}_{\mathrm{d}=}$ Ishutdown (see Fig. 3 \& 4)
$\mathrm{V}_{\text {in }}$ clamp	IN to source clamp voltage	7	8.1	9.5		lin $=1 \mathrm{~mA}$
$\mathrm{V}_{\text {th }}$	IN threshold voltage	1	1.6	2		$\mathrm{Id}_{\mathrm{d}}=50 \mathrm{~mA}, \mathrm{Vds}=14 \mathrm{~V}$
lin, -on	ON state IN positive current	25	90	200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}$
lin, -off	OFF state IN positive current	50	130	250		$V_{\text {in }}=5 \mathrm{~V}$ over-current triggered

Switching Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, Resistive Load $=5 \Omega$, Rinput $=50 \Omega, 100 \mu \mathrm{~s}$ pulse, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (unless otherwise specified).

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
Ton	Turn-on delay time	0.05	0.3	0.6	$\mu \mathrm{s}$	See figure 2
T_{r}	Rise time	0.4	1	2		
Trf	Time to 130\% final R ds (on)	-	8	-		
Toff	Turn-off delay time	0.8	2	3.5		See figure 2
T_{f}	Fall time	0.5	1.5	2.5		
Qin	Total gate charge	-	11	-	nC	V in $=5 \mathrm{~V}$

Protection Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$T_{\text {sd }}$	Over temperature threshold	-	165	-	${ }^{\circ} \mathrm{C}$	See fig. 1
$\mathrm{I}_{\text {sd }}$	Over current threshold	10	14	18	A	See fig. 1
$\mathrm{~V}_{\text {reset }}$	IN protection reset threshold	1.5	2.3	3	V	
$T_{\text {reset }}$	Time to reset protection	2	10	40	$\mu \mathrm{~s}$	$\mathrm{~V}_{\text {in }}=0 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$
EOI_OT	Short circuit energy (see application note)	-	400	-	$\mu \mathrm{J}$	$\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$

Functional Block Diagram

Lead Assignments

	D2PAK (SMD220)
IPS031	IPS031S
Part Number	

Figure 1 - Timing diagram

Figure 3 - Active clamp waveforms

Figure 2 - IN rise time \& switching time definitions

Figure 4 - Active clamp test circuit

All curves are typical values with standard footprints. Operating in the shaded area is not recommended.

Figure 5 - Rds ON (m Ω) Vs Input Voltage (V)

Figure 7 - Turn-ON Delay Time, Rise Time \& Time to 130% final $\mathrm{R}_{\mathrm{ds}}(\mathrm{on})$ (us) Vs Input Voltage (V)

Figure 9 - Turn-ON Delay Time, Rise Time \& Time to 130% final $\mathrm{R}_{\mathrm{ds}}(\mathrm{on})$ (us) Vs IN Resistor (Ω)

Figure 11 - Current limitation \& I shutdown (A) Vs Vin (V)

Figure 10 - Turn-OFF Delay Time \& Fall Time (us) Vs IN Resistor (Ω)

Figure 12 - I shutdown (A) Vs Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Figure 13 - Max.Cont. Ids (A) Vs Amb. Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Figure 15 - Iclamp (A) Vs Inductive Load (mH)

Figure 14 - Ids (A) Vs Protection Resp. Time (s) IPS031 \& IPS031S

Fig. 16 - Transient Thermal Impedance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ Vs Time (s) - IPS031/IPS031S

Figure 17 - Input current ($\mu \mathrm{A}$) Vs Junction $\left({ }^{\circ} \mathrm{C}\right)$

Figure 18 - Vin clamp and V clamp2 (\%) Vs Tj $\left({ }^{\circ} \mathrm{C}\right)$

Figure 19 - Turn-on, Turn-off, and treset ($\mu \mathrm{s}$)

$$
\text { Vs Tj }\left({ }^{\circ} \mathrm{C}\right)
$$

www.irf.com

Case Outline

1. DIMENSIONING \& TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. UIMENSIONS ARE SHOWN IN MLLLIMEIERS [INCHES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
5. HEATSINK \& LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

Tape \& Reel - D²PAK (SMD220)

International
IgR Rectifier
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/11/2001

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

