imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International **10R** Rectifier

Preliminary Data Sheet PD 60178-D

IR1175

Synchronous Rectifier Driver

Features

- Provides constant and proper gate drive to power MOSFETs regardless of transformer output
- Minimizes loss due to power MOSFET body drain diode conduction
- Stand alone operation no ties to primary side
- Schmitt trigger input with double pulse suppression allows operation in noisy environments
- High peak current drive capability 2A
- High speed operation 2MHz
- Adaptable to multiple topologies (such as singleended forward, double-ended forward)

Description

The IR1175 is a high speed CMOS controller designed to drive N-channel power MOSFETs used as synchronous rectifiers in high current, high frequency forward converters with output voltages equal or below 5VDC. Schmitt trigger inputs with double pulse suppression allow the controller to operate in noisy environments. The circuit does not require any ties to the primary side and derives its operating power directly from the secondary. The circuit functions by anticipating transformer output transitions, then turns the power MOSFETs on or off before the transitions of the transformer to minimize body drain diode conduction and reduce associated losses. Turn on/off lead time can be adjusted to accommodate a variety of power MOSFET sizes and circuit conditions. The IR1175 also provides gate drive overlap/dead-time control via external components to further minimize diode conduction by nulling effects of secondary loop and device package inductance.

Product Summary

V _{dd}	5Vdc
IO+/- (peak)	2A/2A
Fmax	2MHz
Max lead time	500nsec

Packages

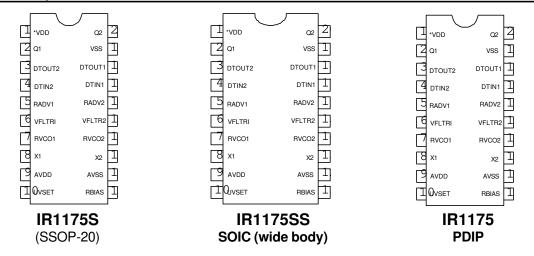
Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur.

Symbol	Definition	Min.	Max.	Units
V _{dd}	Supply voltage	_	7	V _{DC}
lin	Input clamp current	—	+/- 10	mA _{DC}
PD	Power dissipation (SSOP-20)	—	400	mW
RthJC	Thermal resistance (SSOP-20) junction-to-case	—	28.5	°C/W
RthJA	Thermal resistance (SSOP-20) junction-to-ambient	—	90.5	°C/W
Tj	Junction temperature	—	150	°C
TS	Storage temperature	-55	150	°C
ΤL	Lead temperature (soldering, 10 seconds)	_	300	°C

Recommended Operating Conditions

Symbol	Definition	Min.	Тур.	Max.	Units
Vdd	Supply voltage operating range	_	5	—	V _{DC}
TA	Ambient temperature	-40	—	85	°C
Freq	Operating frequency	250	—	500	KHz
Rbias	Required bias resistor (+/- 1%)	_	69.8	_	KΩ
UV	Voltage at UVSET pin	1.75	—	2.25	V _{DC}
Xin	Maximum voltage at X1 and X2 inputs	_	—	5.6	V _{DC}
Cd1/Cd2	Capacitance at pins DTIN1 and DTIN2	_	—	22	pF


Dynamic Electrical Characteristics

Symbol	Definition	Min.	Тур.	Max.	Units
Vdd	Supply voltage operating range	4.0	_	5.5	V _{DC}
lqdd	Vdd quiescent current (Vin=0 or 5V, lout=0)	_	3	5	mA _{DC}
Freq	Operating frequency	100	_	2000	KHz
UVSET+	UVSET positive going threshold	1.10	_	1.4	V
UVSET-	UVSET negative going threshold	0.8	_	1.1	V
Vxth+	X1/X2 Input positive going threshold	_	1.4	_	V _{DC}
Vxth-	X1/X2 Input negative going threshold	_	1.0	_	V _{DC}
Tadv	Externally adjustable lead time (advance)	_	_	500	nsec
Td	Externally adjustable dead-time for Q1 and Q2	20	_	_	nsec
Isink	Q1,Q2 output sink current (Vdd=5.0V,	_	_	2	A
(peak)	pulsed, 10 usec)				
Isource	Q1,Q2 output source current (Vdd=5.0V,	_	_	2	A
(peak)	pulsed, 10 usec)				
VOH	Q1, Q2 High level voltage (lout = 20mA)	_	4.50	_	v
VOL	Q1, Q2 Low level voltage (lout = 20mA)	_	1.15	_	† *
tio	Input to output delay (PLL bypassed, cross coupled	_	20	_	nsec
	mode)				
tr	Gate turn-on rise time (C1=1000pf, Vdd=5V)	_	20	_	nsec
tf	Gate turn-off fall time (C1=1000pf, Vdd=5V)	_	20	_	nsec
Vtr	Cross-over voltage (Vdd=5Vdc, DTIN shorted to	_	2.5	_	V _{DC}
	DTOUT, C1=1000pf) Fig. 3				
Rbias	Required bias resistor	68	_	71	KΩ
Vbias	Voltage at Rbias pin	_	1.25	_	V _{DC}
Tjitter	Phase-lock loop output jitter	-20	_	20	nsec
Ichgpump	Charge pump output current (at VFLTR pin)	_	50	_	μA _{DC}
Vchgpump	Charge pump output voltage (at VFLTR pin)	1.3	1.5	1.7	V _{DC}
Kvco_dc	PLL Vco DC gain	—	62	_	KHz/
					Volt

Vdd=5V, $T_A = 25^{\circ}C$, Rbias = 69.8K unless otherwise specified.

Lead Definitions and Assignments

Symbol	Description
AVDD	Power - + 5 V _{DC} to MOSFET drivers
Q1	Output - gate drive for Q1 power MOSFET
DTOUT1	Output - sets dead time for Q1 output - used with DTIN1
DTIN1	Input - sets dead time for Q1 - used with DTOUT1
RADV1	Output - sets lead time (advance) for Q1
VFLTR1	Output - PLL loop filter for Q1 output
RVCO1	Output - sets PLL center frequency for Q1 output
X1	Input - transformer input for Q1
VDD	Power - +5 Vdc for internal logic
UVSET	Input - sets UVLO+ If this pin is pulled below 1.25VDC externally, then both Q1 and Q2
	outputs will be at Vss (disabled)
RBIAS	Output - connected to 69.8K +/- 1% resistor - sets operating current
AVSS	Ground for logic supply (AVDD)
X2	Input - transformer input for Q2
RVCO2	Output - sets PLL center frequency for Q2 output
VFLTR2	Output - PLL loop filter for Q2
RADV2	Output - sets lead time (advance) for Q2
DTIN2	Input - sets dead time for Q2 - used with DTOUT2
DTOUT2	Output - sets dead time for Q2 - used with DTIN2
VSS	Ground for MOSFET driver supply (VDD)
Q2	Output - gate drive for Q2 power MOSFET

International **TOR** Rectifier

IR1175

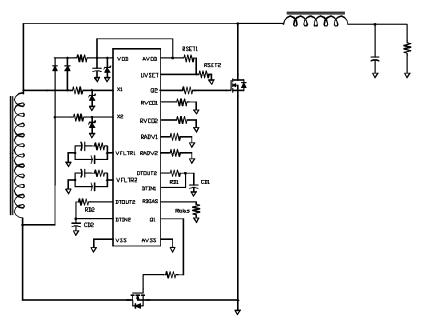


Fig. 1 Typical application circuit when supply Vout < 5.0 V_{DC}

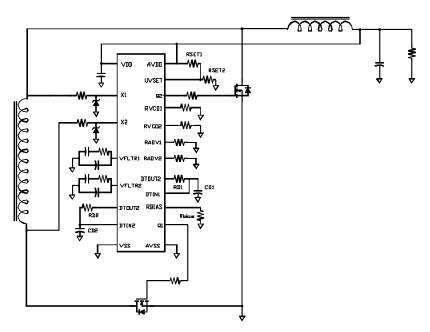
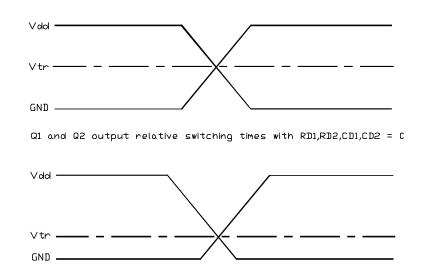



Fig. 2 Typical application circuit when supply Vout = $5.0 V_{DC}$

Q1 and Q2 output relative switching times with RD1,RD2,CD1,CD2 >0

Phase Lock Loop Design Equations:

1 - Resistor to set VCO Ceter Frequency:

Rvco (KΩ) = 143 x [Vchgpump(V_{DC}) / fvco(KHz)] x Kvco dc(KHz/Volt)

Example (A): Choose Vchgpump = 1.5V, desired frequency (fvco) = 300KHz

 $Rvco = 143 \times [1.5/300] \times 62 \text{ Hz/Volt} = 44.33 \text{ K}\Omega$

2 - Small Signal gain for VCO:

Kvco_ac (KHz/Volt) = 1E3 x Kvco_dc (KHz/Volt)/(7 x Rvco(K Ω)

Example (B): Choosing same conditions as in example A:

Kvco_ac = 1E3 x 62 / (7 x 44.33) = 199.9 KHz/volt

3 -PLL Natural frequency:

ωn = 2πfn(KHz)= $\sqrt{$ Ichpump(uA) x Kvco_ac(KHz/V) / C(nF)

Choose Cf such that Cf=C/16

4 -PLL Damping factor calculations:

 $P = \pi E-3 \times Rf$ (KOhms) x C(nF) x fn(KHz)

Typical value for P is 0.707. (Critically damped)

5-Advance tining:

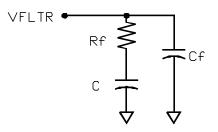
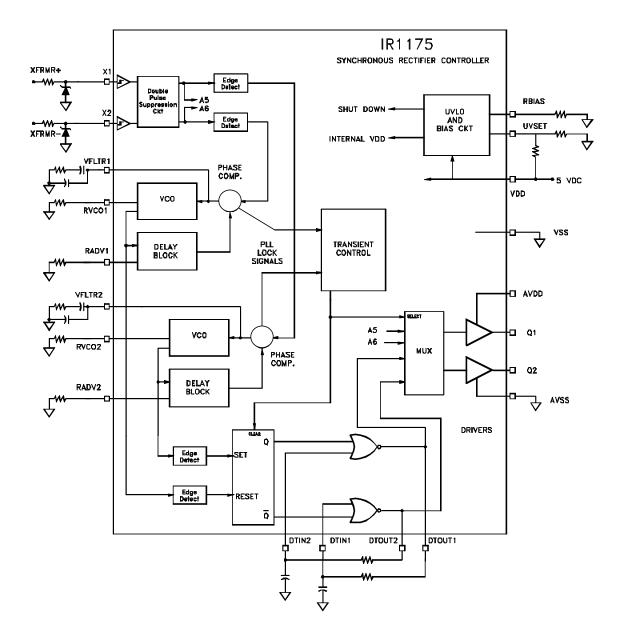
Tadv(nsec) = RADV (KOhms)*10 - 10

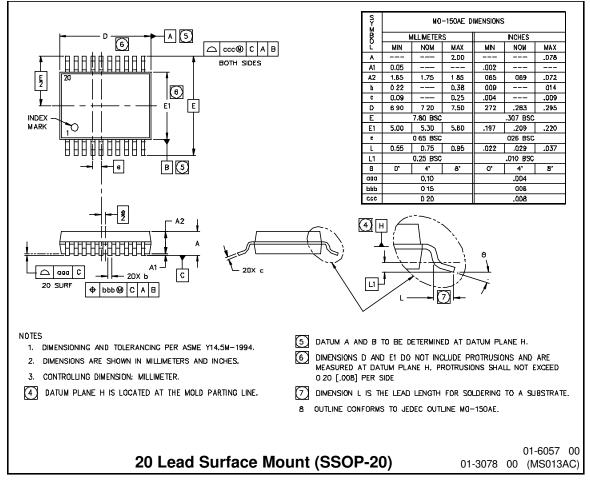
W here RADV is resistance from RADV1 or RADV2 to ground. Example C:RADV=10Kohms will result in Tadv=10*10-10=90 nsec .

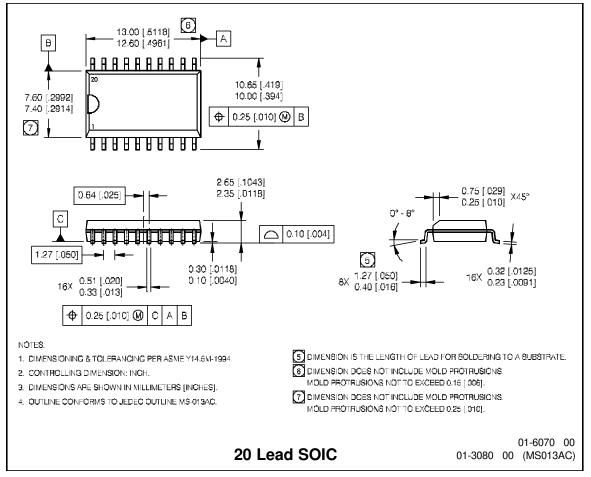
6-Dead time calculations:

Td(nsec)=0.69*Rdt(KOhms)*Cdt(pF) + 5 (For Vdd=5 V)

W here Rdt is resistance between pins DTIN1 and DIOUT1 or DTIN2 and DTOUT2.Cdt is apacitance from DTIN1 or DTIN2 to ground. Example D:Rdt=10Kohm s and Cdt=22pF will result in: Td=156.8 nsec

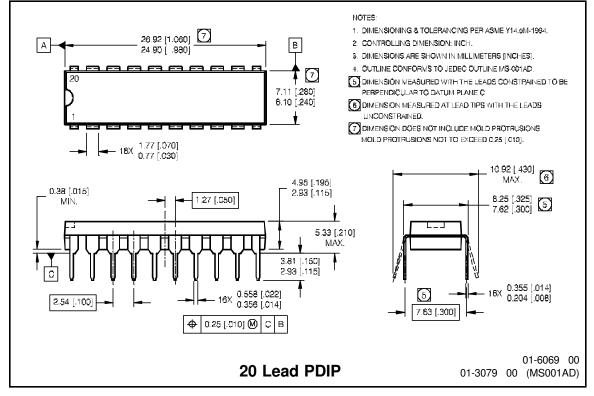




Fig. 4 PLL loop filter component definitions



International **TOR** Rectifier

Case Outline



Case Outline

International **TOR** Rectifier

Case Outline

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 1/7/2002 11