imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International **ICR** Rectifier

Preliminary Data Sheet PD60214 Rev B

IR20153S & (PbF)

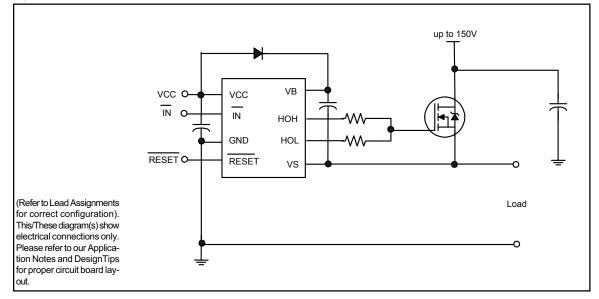
HIGH SIDE DRIVER WITH RECHARGE

Features

- Floating channel designed for bootstrap operation Fully operational up to 150V
- Tolerant to negative transient voltage, dV/dt immune • Gate drive supply range from 5V to 20V
- Undervoltage lockout
- Internal recharge FET for bootstrap refresh
- Internal deadtime of 11μs and 0.8μs
- CMOS Schmitt-triggered input logic
- Output out of phase with input
- Reset input
- Split pull-up and pull-down gate drive pins
- Also available LEAD-FREE (PbF)

Description

The IR20153S is a high voltage, high speed power MOSFET driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS output down to 3.3V. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET in the high or low side configuration which operates up to 150 volts.


Product Summary

VOFFSET	150V max.
I _O +/-	400mA @ VBS=7V, 1.5A @ VBS=16V
Vout	5-20V
t _{on/off}	1.0 and 0.3 μs

Package

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND, all currents are defined positive into any lead. This is a stress only rating and operation of the device at these or any conditions exceeding those indicated in the operational sections of this specifications is not implied.

Symbol	Definition	Min.	Max.	Units
VB	High side driver output stage voltage	-5.0	170	
VS	High side floating supply offset voltage	- 8.0	150	.,
V _{HO}	Output voltage gate high connection	V _S - 0.3	V _B + 0.3	V
V _{CC}	Low side fixed supply voltage	-0.3	25	
V _{IN}	Input voltage (IN and RESET)		-0.3	V _{CC} +0.3
dV/dt	Allowable offset voltage slew rate	—	50	V/nsec
Тj	Junction temperature	-55	150	
Τ _S	Storage temperature	-55	150	
TL	Lead temperature (soldering, 10 seconds)	_	300	°C

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 2. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to GND. The VS offset rating is tested with all suppliers biased at Vcc=5V and VBS=7V.

Symbol	Definition	Min.	Max.	Units
VB	High side driver output stage voltage	V _S + 5	V _S + 20	
VS	High side floating supply offset voltage	-1.6	150	
V _{HO}	Output voltage gate high connection	VS	VB	V
V _{CC}	Supply voltage	5	20	
VIN	Input voltage (IN and RESET)	0	Vcc	
T _A	Ambient temperature	-55	150	°C

International

IR20153S & (PbF)

Electrical Characteristics

Unless otherwise specified, VCC = 5V, VBS = 7V, VS = 0V, IN = 0V, RES = 5V, load R = 50Ω , C = 6.8nF (see Figure 3). Unless otherwise noted, these specifications apply for an operating ambient temperature of T_A = 25° C.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VCC Supply	y Characteristics	1	1	i	ł	1
V _{CCUV+}	VCC supply undervoltage positive going threshold	_	-	4.3	v	V_{CC} rising from 0V
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	2.5	—	_	v	V _{CC} dropping from 5V
VCCUVHYS	V _{CC} supply undervoltage lockout hysteresis	0.01	0.3	0.60		
IQCC	VCC supply current	—	_	400	uA	VCC = 3.6V & 6.5V
VBS Supply	y Characteristics					
VBSUV+	VBS supply undervoltage positive going threshold	_	_	4.3	V	VBS rising from 0V
VBSUV-	VBS supply undervoltage negative going threshold	2.5	-	_		VBS dropping from 5V
VBSUVHYS	VBS supply undervoltage lockout hysteresis	0.01	0.3	0.60		
IQBS1	VBS supply current	—	-	100	μΑ	static mode, VBS = 7V, IN = 0V or 5V
IQBS2	VBS supply current	_	—	200	μΑ	static mode, VBS = 16V, IN = 0V or 5V
VB. VS Sup	ply Characteristics					
ILK	Offset supply leakage current	_	_	50	μΑ	VB = VS = 150V
Gate Driver	Characteristics		1			1
lo+1	Peak output source current	250	400	_	mA	
lo+2	Peak output source current	800	1500	—	mA	VBS = 16V
tr1	Output rise time	—	0.2	0.4	μ _{sec}	
tr2	Output rise time	—	0.1	0.2	μ _{sec}	VBS = 16V
lo-1	Peak output sink current	250	400	—	mA	IN = 5V
lo-2	Peak output sink current	800	1500	—	mA	VBS = 16V, IN = 5V
tf1	Output fall time	—	0.2	0.4	μ _{sec}	IN = 5V
tf2	Output fall time	—	0.1	0.2	μ _{sec}	VBS = 16V, IN = 5V
ton	Input-to-Output Turn-on propogation delay (50% input level to 10% output level)	_	1.0	2.0	μsec	
toff	Input-to-Output Turn-off propogation delay (50% input level to 90% output level)	_	0.3	0.9	µsec	
^t res,off	RES-to-Output Turn-off propogation delay (50% input level to 90% [toh] output levels)	_	0.3	0.9	μsec	

Electrical Characteristics

Unless otherwise specified, V_{CC} = 5V, V_{BS} = 7V, V_S = 0V, IN = 0V, RES = 5V, load R = 50Ω , C = 6.8nF (see Figure 3). Unless otherwise noted, these specifications apply for an operating ambient temperature of T_A = 25° C.

Symbol	Definition		Тур.	Max.	Units	Test Conditions
Gate Driver	Characteristics cont.		•			
tres,on	RES-to-Output Turn-On Propogation Delay	-	1.0	2.0	μ _{sec}	
	(50% input level to 10% [tplh] output levels)					
Input Char	acteristics					
VINH	High Logic Level Input Threshold	3	-	-	V	
VINL	Low Logic Level Input Threshold	-	-	1.4	V	
RIN	High Logic Level Input Resistance	40	100	220	kΩ	
VH_RES	High Logic Level RES Input Threshold	3	-	-	V	
VL_RES	Low Logic Level RES Input Threshold	-	-	1.4	V	
RRES	High Logic Level RES Input Resistance	40	100	220	kΩ	
Recharge	Characteristics (see Figure 3a)					
ton_rech	Recharge Transistor Turn-On Propogation Delay	7	11	15	μ _{sec}	VS = 5V
^t off_rech	Recharge Transistor Turn-Off Propogation Delay	-	0.3	0.9	μsec	
VRECH	Recharge Output Transistor On-State Voltage Drop	-	-	1.2	V	IS = 1mA, IN = 5V
Deadtime (Characteristics					
DTHOFF	High Side Turn-Off to Recharge gate Turn-On	7	11	15	μsec	
DTHON	Recharge gate Turn-Off to High Side Turn-On0.	0.4	0.8	1.5	μ _{sec}	

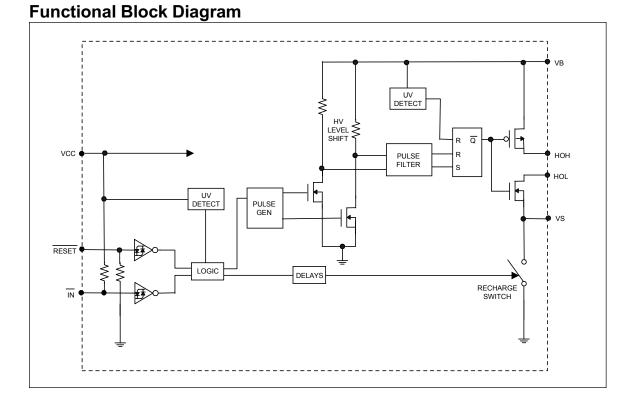
International **tor** Rectifier

A True table for V_{CC}, V_{BS}, RESET, IN, H_o and RechFET is shown as follows. This truth table is for ACTIVE LOW IN.

Vcc	VBS	RESET-	IN-	Ho	RechFET
<v<sub>CCUVLO-</v<sub>	<vbsuvlo-< td=""><td>HIGH</td><td>HIGH</td><td>OFF</td><td>ON</td></vbsuvlo-<>	HIGH	HIGH	OFF	ON
<vccuvlo-< td=""><td><vbsuvlo-< td=""><td>HIGH</td><td>LOW</td><td>OFF</td><td>ON</td></vbsuvlo-<></td></vccuvlo-<>	<vbsuvlo-< td=""><td>HIGH</td><td>LOW</td><td>OFF</td><td>ON</td></vbsuvlo-<>	HIGH	LOW	OFF	ON
<v<sub>CCUVLO-</v<sub>	<vbsuvlo-< td=""><td>LOW</td><td>HIGH</td><td>OFF</td><td>ON</td></vbsuvlo-<>	LOW	HIGH	OFF	ON
<vccuvlo-< td=""><td><vbsuvlo-< td=""><td>LOW</td><td>LOW</td><td>OFF</td><td>ON</td></vbsuvlo-<></td></vccuvlo-<>	<vbsuvlo-< td=""><td>LOW</td><td>LOW</td><td>OFF</td><td>ON</td></vbsuvlo-<>	LOW	LOW	OFF	ON
<vccuvlo-< td=""><td>>VBSUVLO+</td><td>HIGH</td><td>HIGH</td><td>OFF</td><td>ON</td></vccuvlo-<>	>VBSUVLO+	HIGH	HIGH	OFF	ON
<vccuvlo-< td=""><td>>VBSUVLO+</td><td>HIGH</td><td>LOW</td><td>OFF</td><td>ON</td></vccuvlo-<>	>VBSUVLO+	HIGH	LOW	OFF	ON
<vccuvlo-< td=""><td>>VBSUVLO+</td><td>LOW</td><td>HIGH</td><td>OFF</td><td>ON</td></vccuvlo-<>	>VBSUVLO+	LOW	HIGH	OFF	ON
<vccuvlo-< td=""><td>>VBSUVLO+</td><td>LOW</td><td>LOW</td><td>OFF</td><td>ON</td></vccuvlo-<>	>VBSUVLO+	LOW	LOW	OFF	ON
>VccUVLO+	<vbsuvlo-< td=""><td>HIGH</td><td>HIGH</td><td>OFF</td><td>ON</td></vbsuvlo-<>	HIGH	HIGH	OFF	ON
>VccUVLO+	<vbsuvlo-< td=""><td>HIGH</td><td>LOW</td><td>OFF</td><td>OFF</td></vbsuvlo-<>	HIGH	LOW	OFF	OFF
>VccUVLO+	<vbsuvlo-< td=""><td>LOW</td><td>HIGH</td><td>OFF</td><td>ON</td></vbsuvlo-<>	LOW	HIGH	OFF	ON
>VccUVLO+	<vbsuvlo-< td=""><td>LOW</td><td>LOW</td><td>OFF</td><td>ON</td></vbsuvlo-<>	LOW	LOW	OFF	ON
>VccUVLO+	>VBSUVLO+	HIGH	HIGH	OFF	ON ¹
>VccUVLO+	>VBSUVLO+	HIGH	LOW	ON	OFF ¹
>VccUVLO+	>VBSUVLO+	LOW	HIGH	OFF	ON ¹
>V _{cc} UVLO+	>VBSUVLO+	LOW	LOW	OFF	ON ¹

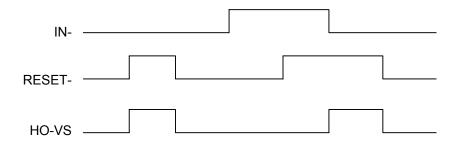
RESET = HIGH indicates that high side MOSFET is allowed to be turned on.

RESET = LOW indicates that high side MOSFET is OFF.


IN = LOW indicates that high side MOSFET is on.

IN = HIGH indicates that high side MOSFET is off.

RechFET = ON indicates that the recharge MOSFET is on.


RechFET = OFF indicates that the recharge MOSFET is off.

¹Note: Refer to the RESET functionality graph of Figure 7, for VCC and VBS voltage ranges under which the functionality is normal.

Lead Definitions and Assignments

Symbol	Description	
VCC	Driver Supply	
IN-	Driver Control Signal Input	1 _{VCC} VB 8
GND	Ground	
RESET	Driver Enable Signal Input	
VS	MOSFET Source Connection	3 GND HOL 6
H _{OL}	MOSFET Gate Low Connection	4 RESET- VS 5
Н _{он}	MOSFET Gate High Connection	
VB	Driver Output Stage Supply	8-Lead SOIC

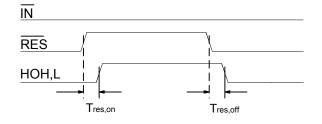


Figure 1a. Reset Timing Diagram

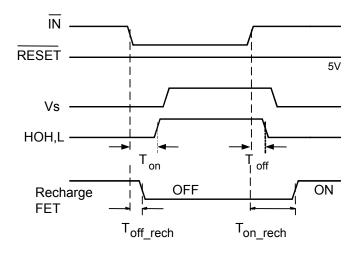


Figure 2. Input/Output Timing Diagram

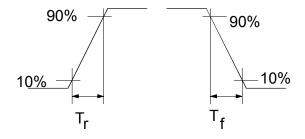


Figure 2a. Output Timing Diagram

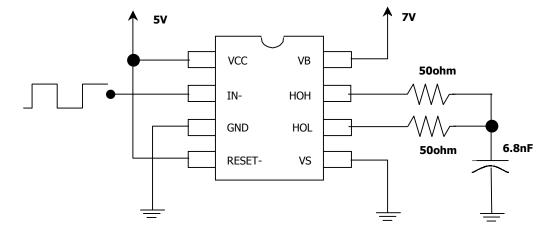


Figure 3. Switching Time Test Circuit

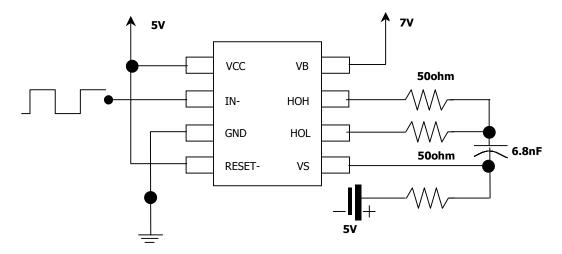


Figure 3a. Ton_rech and Toff_rech Test Circuit

International **TOR** Rectifier

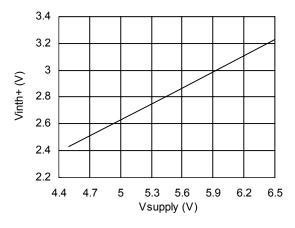


Figure 4. Positive Input and Reset Threshold Voltage vs. Vsupply

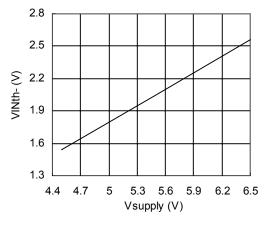


Figure 5. Negative Input and Reset Threshold Voltage vs. Vsupply

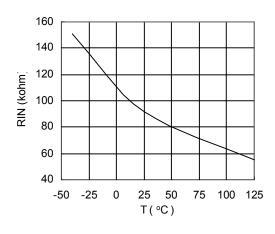


Figure 6. Input and Reset Impedance vs. Temperature

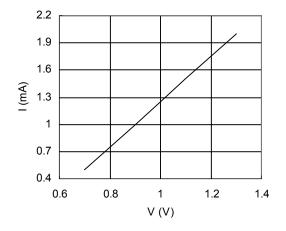
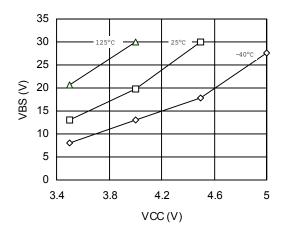
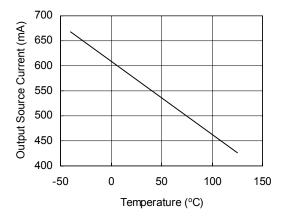
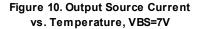



Figure 7. Recharge FET I-V Curve


International **tor** Rectifier


IR20153S & (PbF)

This graph explains the functionality limitation as a function of VCC, VBS and temperature. Each curve on the graph represents VCC Vs. VBS, for a particular temperature. For each particular temperature and VCC, the output is non-functional for any value of VBS above the drawn curve. But for any value of VBS below the curve the functionality is fine.

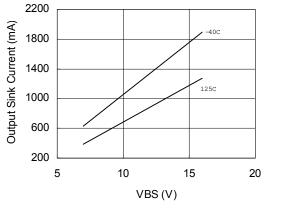


Figure 9. Output Sink Current vs. VBS

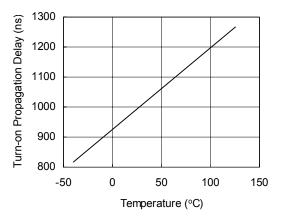
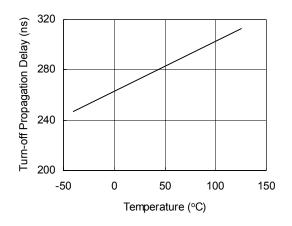
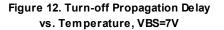




Figure 11. Turn-on Propagation Delay vs. Temperature, VBS=7V

International

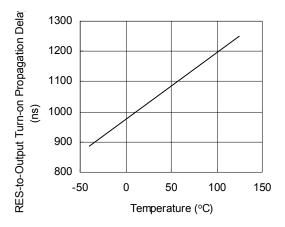
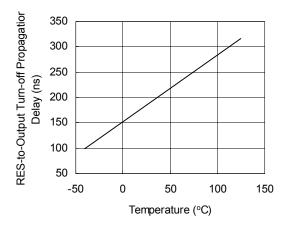



Figure 13. RES-to-Output Turn-on Propagation Delay vs. Temperature, VBS=7V

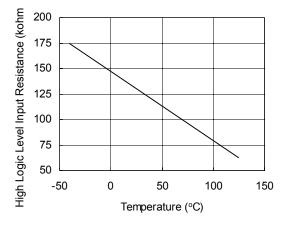


Figure 15. High Logic Level Input Resistance vs. Temperature, VBS=7V

International **TOR** Rectifier

IR20153S & (PbF)

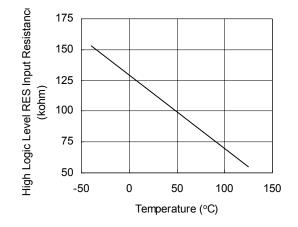


Figure 16. High Logic Level RES Input Resistance vs. Temperature, VBS=7V

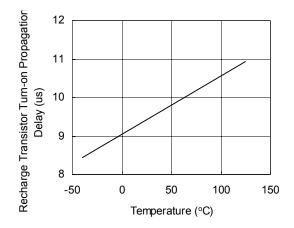
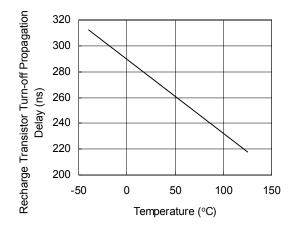
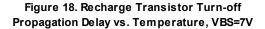




Figure 17. Recharge Transistor Turn-on Propagation Delay vs. Temperature, VBS=7V

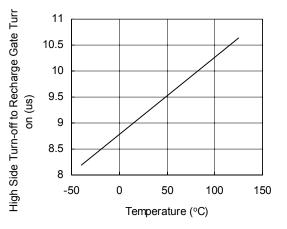


Figure 19. High Side Turn-off to Recharge Gate Turn-on vs. Temperature, VBS=7V

International

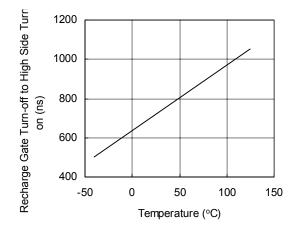
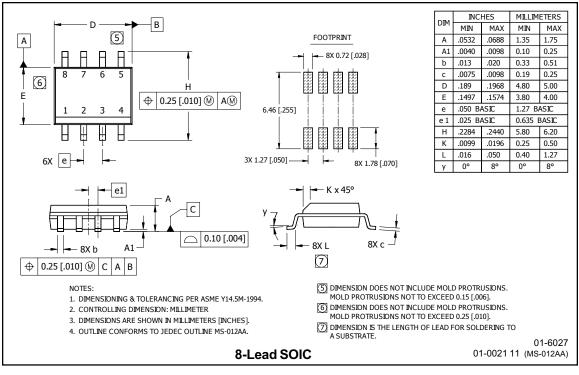
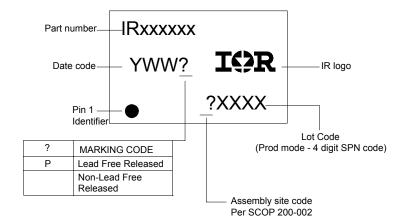




Figure 20. Recharge Gate Turn-off to High Side Turn-on vs. Temperature, VBS=7V

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free) 8-Lead SOIC IR20153S order IR20153S Leadfree Part 8-Lead SOIC IR20153S order IR20153SPbF

International **TOR** Rectifier

Thisproduct has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 10/25/2004