imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

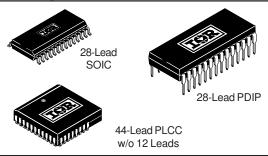
Data Sheet No. PD60032 rev P

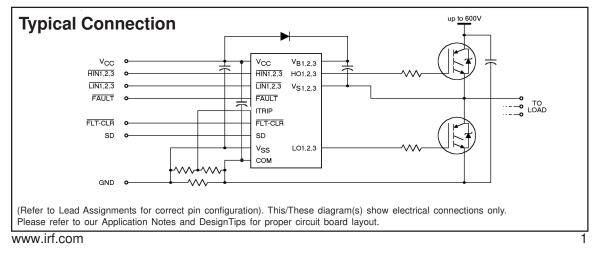
IR2131(J)(S) & (PbF)

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for all channels
- Over-current shutdown turns off all six drivers
- Independent 3 high side & 3 low side drivers
- Matched propagation delay for all channels
- 2.5V logic compatible
- Outputs out of phase with inputs
- 28-Lead SOIC & 44-Lead PLCC are also available in Lead-Free.

Description


The IR2131(J)(S) is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. A shutdown input is provided for a customized shutdown function. An open drain FAULT signal is provided to indicate that any of the shutdowns has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts.


Product Summary

3 HIGH SIDE AND 3 LOW SIDE DRIVER

VOFFSET	600V max.
I _O +/-	160 mA / 360 mA
Vout	10 - 20V
t _{on/off} (typ.)	1.3 & 0.6 µs
Deadtime (typ.)	700 ns

Packages

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional Information is shown in Figures 7 through 10.

Symbol	Definition		Min.	Max.	Units
V _{B1,2,3}	High Side Floating Supply Voltage		-0.3	625	
V _{S1,2,3}	High Side Floating Offset Voltage	V _{B1,2,3} - 25	V _{B1,2,3} + 0.3		
V _{HO1,2,3}	High Side Floating Output Voltage		V _{S1,2,3} - 0.3	V _{B1,2,3} + 0.3	
V _{CC}	Low Side and Logic Fixed Supply Voltage		-0.3	25	
V _{SS}	Logic Ground		V _{CC} - 25	$V_{CC} + 0.3$	
V _{LO1,2,3}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	V
V _{IN}	Logic Input Voltage (HIN1,2,3, LIN1,2,3, FL	T-CLR, SD&ITRIP)	V _{SS} - 0.3	(V _{SS} + 15) or	
V _{FLT}	FAULT Output Voltage		V _{SS} - 0.3	V _{CC} + 0.3	
dV _S /dt	Allowable Offset Supply Voltage Transient		—	50	V/ns
PD	Package Power Dissipation @ $T_A \le +25^{\circ}C$	(28 Lead DIP)	—	1.5	
		(28 Lead SOIC)	_	1.6	W
		(44 Lead PLCC)	—	2.0	
Rth _{JA}	Thermal Resistance, Junction to Ambient	(28 Lead DIP)	—	83	
		(28 Lead SOIC)		78	°C/W
		(44 Lead PLCC)	—	63	°C
TJ	Junction Temperature			150	U
Τ _S	Storage Temperature		-55	150	
TL	Lead Temperature (Soldering, 10 seconds)			300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _{B1,2,3}	High Side Floating Supply Voltage	V _{S1,2,3} + 10	V _{S1,2,3} + 20	
V _{S1,2,3}	High Side Floating Offset Voltage	Note 1	600	
V _{HO1,2,3}	High Side Floating Output Voltage	V _{S1,2,3}	V _{B1,2,3}	
V _{CC}	Low Side and Logic Fixed Supply Voltage	10	20	v
V _{SS}	Logic Ground	-5	5	v
V _{LO1,2,3}	Low Side Output Voltage	0	V _{CC}	
V _{IN}	Logic Input Voltage (HIN1,2,3, LIN1,2,3, FLT - CLR, SD & ITRIP)	V _{SS}	V _{SS} + 5	
V _{FLT}	FAULT Output Voltage	V _{SS}	V _{CC}	
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for V_S of -5V to +600V. Logic state held for V_S of -5V to - V_{BS} . (Please refer to the Design Tip DT97-3 for more details).

Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.

International **tor** Rectifier

Dynamic Electrical Characteristics

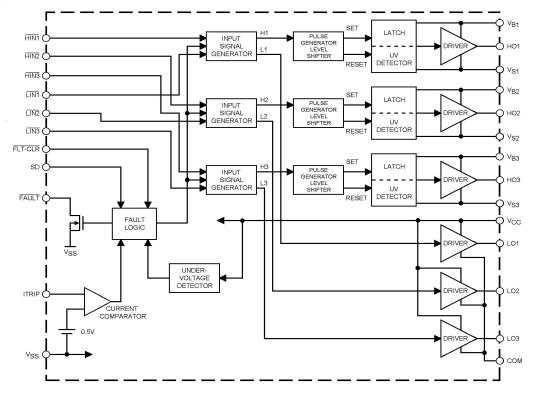
 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V, $V_{S1,2,3}$ = V_{SS} = COM, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 4 through 5.

	Parameter		Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	0.6	1.3	2.0	μs	
t _{off}	Turn-Off Propagation Delay	0.2	0.6	1.0	μο	V _{IN} = 0 & 5V
tr	Turn-On Rise Time	—	80	150		V _{S1,2,3} = 0 to 600V
t _f	Turn-Off Fall Time	—	40	100		
t _{itrip}	ITRIP to Output Shutdown Propagation Delay	400	700	1000		V_{IN} , $V_{ITRIP} = 0 \& 5V$
t _{bl}	ITRIP Blanking Time	—	400	—		$V_{ITRIP} = 1V$
t _{flt}	ITRIP to FAULT Indication Delay	400	700	1000	ns	V _{IN} , V _{ITRIP} = 0 & 5V
t _{flt,in}	Input Filter Time (All Six Inputs)	—	310	—		V _{IN} = 0 & 5V
t _{fltclr}	FLT - CLR to FAULT Clear Time	400	800	1200		$V_{IN}, V_{IT}, V_{FC} = 0.85V$
t _{sd}	SD to Output Shutdown Propagation Delay	400	700	1000		V _{IN} , V _{SD} = 0 & 5V
DT	Deadtime	400	700	1200		V _{IN} = 0 & 5V

NOTE: For high side PWM, HIN pulse width must be $\geq 1.5 \mu$ sec

Static Electrical Characteristics

 V_{BIAS} (V_{CC}, $V_{BS1,2,3}$) = 15V, $V_{S1,2,3}$ = V_{SS} = COM and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The V_O and I_O parameters are referenced to COM and $V_{S1,2,3}$ and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.


	Parameter	Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "0" Input Voltage (OUT = LO)	2.2		_		
V _{IL}	Logic "1" Input Voltage (OUT = HI)	—	—	0.8		
V _{FCLR,IH}	Logic "0" Fault Clear Input Voltage	2.2	—	—	v	
V _{FCLR,IL}	Logic "1" Fault Clear Input Voltage	—	—	0.8	v	
V _{SD,TH+}	Shutdown Input Positive Going Threshold	1.2	1.8	2.1		
V _{SD,TH-}	Shutdown Input Negative Going Threshold	0.9	1.5	1.8		
V _{IT,TH+}	ITRIP Input Positive Going Threshold	250	485	600		
V _{IT,TH-}	ITRIP Input Negative Going Threshold	200	400	550	mV	
V _{OH}	High Level Output Voltage, V _{BIAS} - VO	—	—	100	1117	$V_{IN} = 0V, I_O = 0A$
V _{OL}	Low Level Output Voltage, VO	—	—	100		$V_{IN} = 5V, I_O = 0A$
I _{LK}	Offset Supply Leakage Current	—	—	50	μA	$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	—	30	100	μΛ	$V_{IN} = 0V \text{ or } 5V$
IQCC	Quiescent V _{CC} Supply Current	_	3.0	4.5	mA	$V_{IN} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" Input Bias Current (OUT = HI)	—	190	300		$V_{IN} = 0V$
I _{IN-}	Logic "0" Input Bias Current (OUT = LO)	_	50	100	μA	$V_{IN} = 5V$
I _{ITRIP+}	"High" ITRIP Bias Current	—	75	150		ITRIP = 5V
I _{ITRIP-}	"Low" ITRIP Bias Current	—		100	nA	ITRIP = 0V
I _{FCLR+}	Logic "1" Fault Clear Bias Current	—	125	250		$\overline{FLT} - CLR = 0V$
I _{FCLR-}	Logic "0" Fault Clear Bias Current	—	75	150	μA	$\overline{FLT} - CLR = 5V$
I _{SD+}	Logic "1" Shutdown Bias Current	—	75	150		SD = 5V
I _{SD-}	Logic "0" Shutdown Bias Current	<u> </u>		100	nA	SD = 0V

Static Electrical Characteristics -- Continued

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15V, $V_{S1,2,3}$ = V_{SS} = COM and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The V_O and I_O parameters are referenced to COM and $V_{S1,2,3}$ and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

	Parameter		Value			
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	8.2	8.7	9.2		
V _{BSUV-}	V _{BS} Supply Undervoltage Negative Going Threshold	7.8	8.3	8.8	V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	8.2	8.7	9.2	v	
V _{CCUV-}	V _{CC} Supply Undervoltage Negative Going Threshold	7.8	8.3	8.8		
R _{on,FLT}	FAULT Low On-Resistance	—	55	75	Ω	
I _{O+}	Output High Short Circuit Pulsed Current	160	250	—	mA	$V_O = 0V, V_{IN} = 0V$ PW $\leq 10 \ \mu s$
I _{O-}	Output Low Short Circuit Pulsed Current	360	500	—	mA	$V_O = 15V, V_{IN} = 5V$ $PW \le 10 \ \mu s$

Functional Block Diagram

www.irf.com

International **tor** Rectifier

IR2131(J)(S) & (PbF)

Lead Definitions

Lea	ad
Symbol	Description
HIN1,2,3	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
LIN1,2,3	Logic inputs for low side gate driver output (LO1,2,3), out of phase
FLT-CLR	Logic input for fault clear
SD	Logic input for shutdown
FAULT	Indicates over-current or undervoltage lockout (low side) has occurred, negative logic
Vcc	Low side and logic fixed supply
ITRIP	Input for over-current shutdown
V _{SS}	Logic ground
VB1,2,3	High side floating supplies
HO1,2,3	High side gate drive outputs
V _{S1,2,3}	High side floating supply returns
LO1,2,3	Low side gate drive outputs
COM	Low side return

Lead Assignments

1 Vcc VB1 28 2 HIN1 Ho1 27 3 HIN2 VS1 26 4 HIN3 25 5 5 LIN1 VB2 24 6 LIN2 Ho2 23 7 LIN3 VS2 22 8 FAULT 21 9 9 ITRIP VB3 20 10 FLT-CLR Ho3 19 11 SD VS3 18 12 VSS 17 13 13 COM Lo1 16 14 LO3 LO2 15	Image: Product of the second state	1 VCC VB1 28 2 HN1 HO1 27 3 HN2 VS1 26 4 HN3 25 5 5 LN1 VB2 24 6 LN2 HO2 23 7 LN3 VS2 22 8 FAULT 21 9 9 ITRIP VB3 20 10 FLT-CLR HO3 19 11 SD VS3 18 12 VSS 17 13 COM L01 16 14 LO3 LO2 15			
IR2131	IR2131J IR2131S				
Part Number					

International

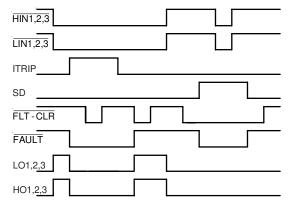


Figure 1. Input/Output Timing Diagram

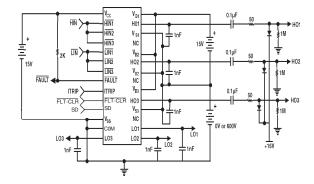


Figure 3. Switching Time Test Circuit

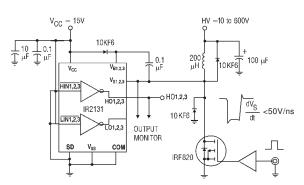


Figure 2. Floating Supply Voltage Transient Test Circuit

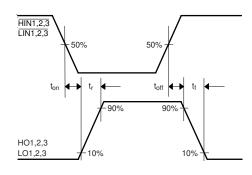


Figure 4. Switching Time Waveform Definitions

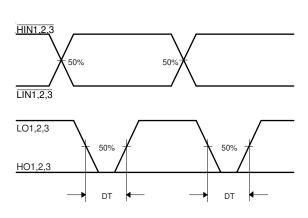


Figure 5. Deadtime Waveform Definitions

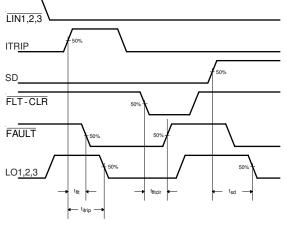
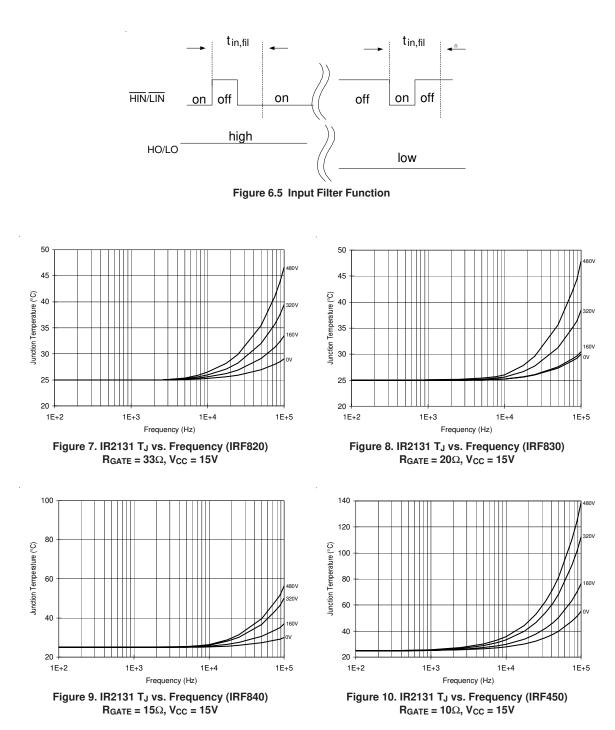
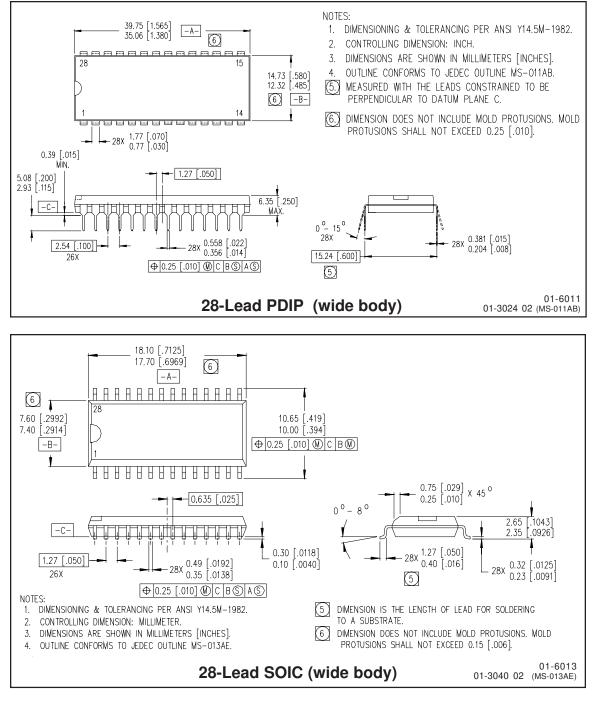
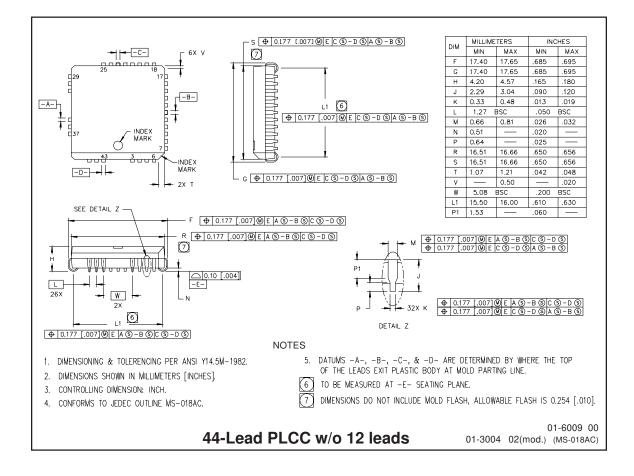



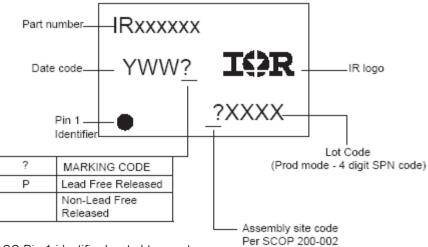
Figure 6. Shutdown Waveform Definitions

www.irf.com


International **ISR** Rectifier


www.irf.com

7


Case outlines

International **IOR** Rectifier

LEADFREE PART MARKING INFORMATION

* PLCC Pin 1 identifier located top center

ORDER INFORMATION

Basic Part (Non-Lead Free	Lead-Free Part				
28-Lead PDIPIR213128-Lead SOICIR2131544-Lead PLCCIR2131J		28-Lead PDIP 28-Lead SOIC 44-Lead PLCC	IR2131 IR2131S IR2131J	order Not available order IR2131SPbF order IR2131JPbF	

International

This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/11/04

www.irf.com