imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International **ICR** Rectifier Preliminary Data Sheet No. PD60131 revM

IR21531(D)(S)&(PbF)

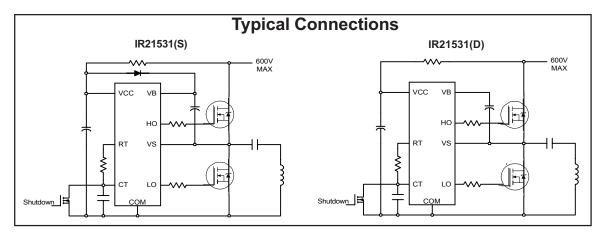
SELF-OSCILLATING HALF-BRIDGE DRIVER

Features

- Integrated 600V half-bridge gate driver
- 15.6V zener clamp on Vcc
- True micropower start up
- Tighter initial deadtime control
- Low temperature coefficient deadtime
- Shutdown feature (1/6th Vcc) on CT pin
- Increased undervoltage lockout Hysteresis (1V)
- Lower power level-shifting circuit
- Constant LO, HO pulse widths at startup
- Lower di/dt gate driver for better noise immunity
- Low side output in phase with RT
- Internal 50nsec (typ.) bootstrap diode (IR21531D)
- Excellent latch immunity on all inputs and outputs
- ESD protection on all leads
- Also available LEAD-FREE

Description

The IR21531(D)(S) are an improved version of the popular IR2155 and IR2151 gate driver ICs, and in-


Product Summary

VOFFSET	600V max.
Duty Cycle	50%
Tr/Tp	80/40ns
V _{clamp}	15.6V
Deadtime (typ.)	0.6 µs

Packages

corporates a high voltage half-bridge gate driver with a front end oscillator similar to the industry standard CMOS 555 timer. The IR21531 provides more functionality and is easier to use than previous ICs. A shutdown feature has been designed into the C_T pin, so that both gate driver outputs can be disabled using a low voltage control signal. In addition, the gate driver output pulse widths are the same once the rising undervoltage lockout threshold on V_{CC} has been reached, resulting in a more stable profile of frequency vs time at startup. Noise immunity has been improved significantly, both by lowering the peak di/dt of the gate drivers, and by increasing the undervoltage lockout hysteresis to 1V. Finally, special attention has been payed to maximizing the latch immunity of the device, and providing comprehensive ESD protection on all pins.

Absolute Maximum Ratings

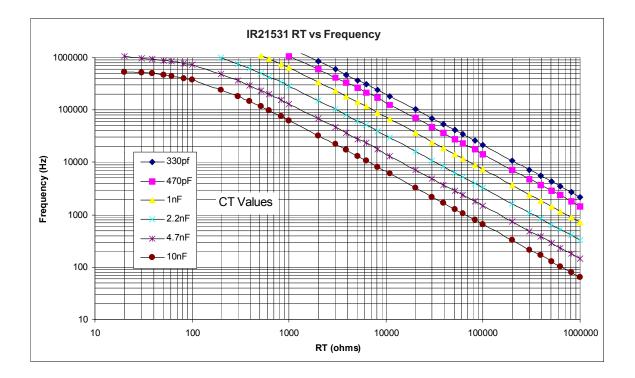
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units		
VB	High side floating supply voltage		-0.3	625		
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3		
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3		
V _{LO}	Low side output voltage		-0.3	V _{CC} +0.3	V	
V _{RT}	R _T pin voltage		-0.3	V _{CC} + 0.3		
VCT	C _T pin voltage		-0.3	V _{CC} + 0.3		
lcc	Supply current (note 1)			25	mA	
I _{RT}	R _T pin current		-5	5	111/5	
dV _s /dt	Allowable offset voltage slew rate		-50	50	V/ns	
PD	Maximum power dissipation @ $T_A \le +25^{\circ}C$ (8 Lead DIP)			1.0	W	
	(8 Lead SOIC)			0.625	- vv	
Rth _{JA}	Thermal resistance, junction to ambient (8 Lead DIP)			125	°C///	
	(8 Lead SOIC)			200	°C/W	
TJ	Junction temperature		-55	150		
Τ _S	Storage temperature		-55	150	°C	
ΤL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units
V _{BS}	High side floating supply voltage	V _{CC} - 0.7	VCLAMP	
Vs	Steady state high side floating supply offset voltage	-3.0 (note 2)	600	V
V _{CC}	Supply voltage	10	VCLAMP	
lcc	Supply current	(note 3)	5	mA
Тj	Junction temperature	-40	125	°C


Note 1: This IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the V_{CLAMP} specified in the Electrical Characteristics section.

Note 2: Care should be taken to avoid output switching conditions where the V_S node flies inductively below ground by more than 5V.

Note 3: Enough current should be supplied to the V_{CC} pin of the IC to keep the internal 15.6V zener diode clamping the voltage at this pin.

Recommended Component Values

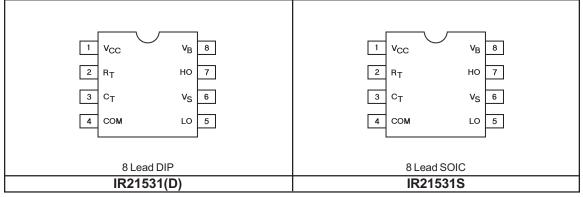
Symbol	Component	Min.	Max.	Units
RT	Timing resistor value	10		kΩ
CT	C _T pin capacitor value	330	—	pF

Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 12V, C_L = 1000 pF, C_T = 1 nF and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

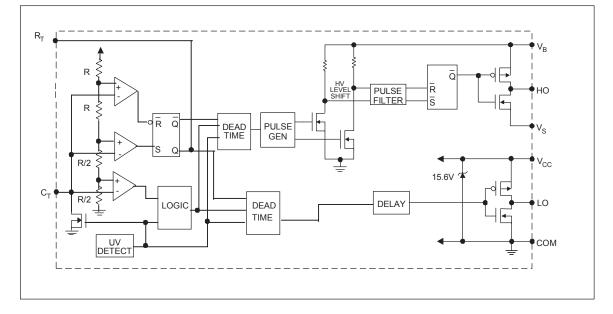
Low Vo	Itage Supply Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+}	Rising V _{CC} undervoltage lockout threshold	8.1	9.0	9.9		
V _{CCUV-}	Falling V _{CC} undervoltage lockout threshold	7.2	8.0	8.8	V	
VCCUVH	V _{CC} undervoltage lockout Hysteresis	0.5	1.0	1.5	1	
IQCCUV	Micropower startup V _{CC} supply current		75	150		Vcc≤Vccuv-
IQCC	Quiescent V _{CC} supply current		500	950	μΑ	
VCLAMP	V _{CC} zener clamp voltage	14.4	15.6	16.8	V	I _{CC} = 5mA
Floatin	g Supply Characteristics				·	·
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
IQBSUV	Micropower startup V _{BS} supply current	_	0	10		V _{CC} ≤V _{CCUV} -
I _{QBS}	Quiescent VBS supply current	_	30	50	μΑ	
V _{BSMIN}	Minimum required V_{BS} voltage for proper functionality from R_T to HO	_	4.0	5.0	V	V _{CC} =V _{CCUV+} + 0.1V
ILK	Offset supply leakage current	_	_	50	μA	$V_{\rm B} = V_{\rm S} = 600 V$
VF	Bootstrap diode forward voltage (IR21531D)	0.5	_	1.0	V.	IF = 250mA
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
fosc	Oscillator frequency	19.4	20	20.6	kHz	R _T = 36.9kΩ
	. ,	94	100	106	KIIZ	RT = 7.43kΩ
d	RT pin duty cycle	48	50	52	%	fo < 100kHz
ICT	CT pin current		0.001	1.0	uA	
ICTUV	UV-mode CT pin pulldown current	0.30	0.70	1.2	mA	V _{CC} = 7V
V _{CT+}	Upper C _T ramp voltage threshold	_	8.0	—		
Vct-	Lower CT ramp voltage threshold	—	4.0	—	V	
VCTSD	CT voltage shutdown threshold	1.8	2.1	2.4		
V _{RT+}	High-level RT output voltage, VCC - VRT	—	10	50		I _{RT} = 100μΑ
		—	100	300		I _{RT} = 1mA
Vrt-	Low-level RT output voltage	_	10	50		I _{RT} = 100μA
		_	100	300	mV	I _{RT} = 1mA
Vrtuv	UV-mode RT output voltage	_	0	100		$V_{CC} \le V_{CCUV}$
VRTSD	SD-Mode RT output voltage, VCC - VRT	_	10	50		I _{RT} = 100μA, V _{CT} = 0V
		_	10	300	-	$I_{RT} = 1mA,$ $V_{CT} = 0V$

Electrical Characteristics (cont.)


Gate Driver Output Characteristics

oute birter output onaldotenotion						
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
Voh	High level output voltage, VBIAS -VO	_	0	100		I _O = OA
VOL	Low-level output voltage, VO	_	0	100	mV	I _O = OA
VOL_UV	UV-mode output voltage, VO	_	0	100]	I _O = OA
						V _{CC} ≤V _{CCUV} -
tr	Output rise time	_	80	150		
tf	Output fall time	—	45	100	nsec	
t _{sd}	Shutdown propogation delay	_	660	—	T	
td	Output deadtime (HO or LO)	0.35	0.60	0.85	μsec	

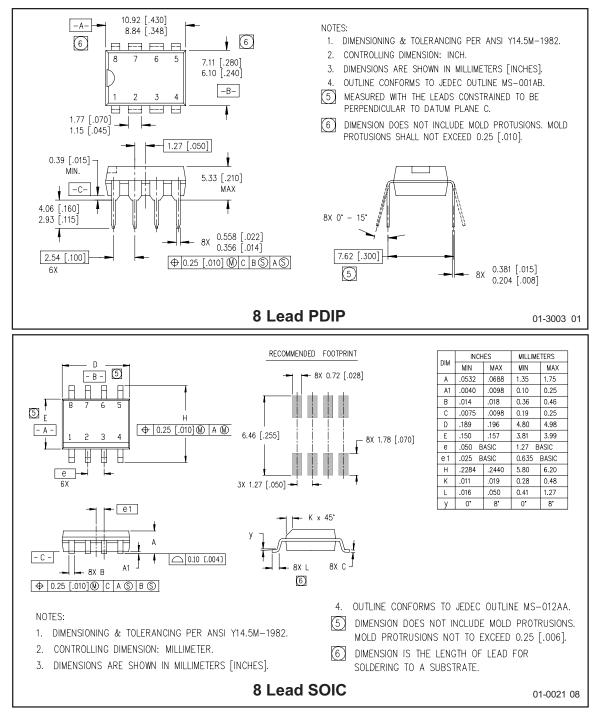
Lead Definitions


Symbol	Description
V _{CC}	Logic and internal gate drive supply voltage
R _T	Oscillator timing resistor input
CT	Oscillator timing capacitor input
COM	IC power and signal ground
LO	Low side gate driver output
Vs	High voltage floating supply return
НО	High side gate driver output
VB	High side gate driver floating supply

Lead Assignments

NOTE: The IR21531D is offered in 8 lead DIP only.

Functional Block Diagram for IR21531(S)



Functional Block Diagram for IR21531D

International **IOR** Rectifier

IR21531(D)(S)&(PbF)

International **tor** Rectifier

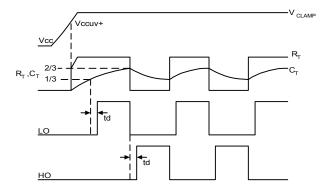


Figure 1. Input/Output Timing Diagram

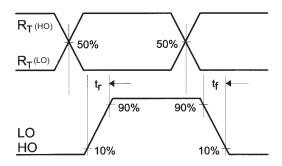


Figure 2. Switching Time Waveform Definitions

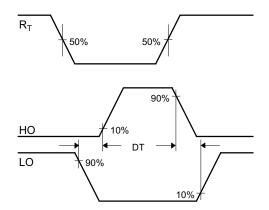
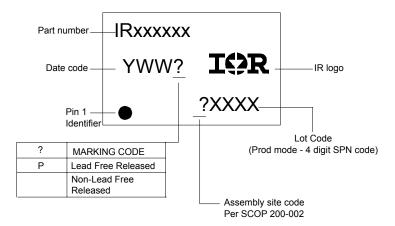



Figure 3. Deadtime Waveform Definitions

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR21531 order IR21531 8-Lead SOIC IR21531S order IR21531S 8-Lead PDIP IR21531D order IR21531D

Leadfree Part

8-Lead PDIP IR21531 order IR21531PbF 8-Lead SOIC IR21531S order IR21531SPbF 8-Lead PDIP IR21531D order IR21531DPbF

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 9/20/2005