

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

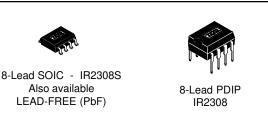
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IR2308(S) & (PbF)

HALF-BRIDGE DRIVER

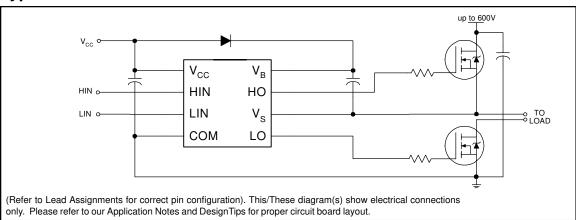

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Logic and power ground +/- 5V offset.
- Internal 540ns dead-time
- Lower di/dt gate driver for better noise immunity
- Also available LEAD_FREE

Description

The IR2308(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is

Packages



2106//2108//2109/2304/2308 Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	
2106	HIN/LIN	no	none COM		
21064	HIIN/LIIN	110	none	VSS/COM	
2108	HIN/LIN	yes	Internal 540ns	COM	
21084	TIIIN/LIIN	yes	Programmable 0.54~5 μs	VSS/COM	
2109	IN/SD	VOC	Internal 540ns	COM	
21094	IIV/SD	yes	yes Programmable 0.54~5 μs VS		
2304	HIN/LIN	yes	Internal 100ns	СОМ	
2308	HIN/LIN	yes	Internal 540ns	COM	

compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	v
V _{CC}	Low side and logic fixed supply voltage		-0.3	25	
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 lead PDIP)	_	1.0	147
		(8 lead SOIC)	_	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	°C/W
	-	(8 lead SOIC)	_	200	. 0, **
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

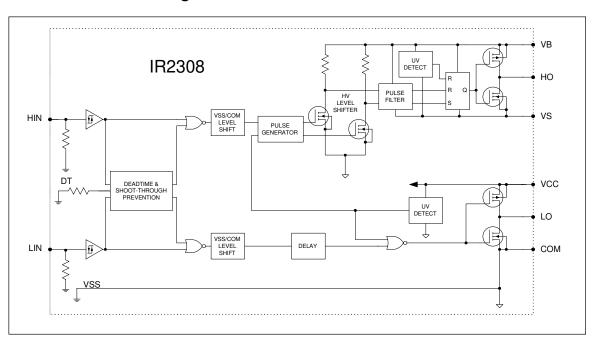
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	v
V _{CC}	Low side and logic fixed supply voltage	10	20	
V _{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage	COM	V _{CC}	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tin DT97-3 for more details).

Dynamic Electrical Characteristics

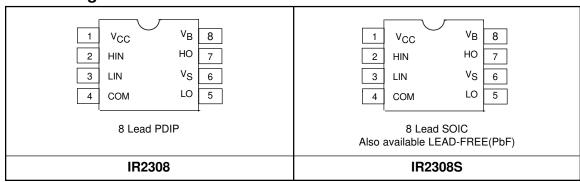
 V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C, DT = VSS unless otherwise specified.


Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		Vs = 0V
toff	Turn-off propagation delay	_	200	280		V _S = 0V or 600V
MT	Delay matching ton - toff	_	0	46		
t _r	Turn-on rise time	_	150	220		V _S = 0V
tf	Turn-off fall time	_	50	80	nsec	V _S = 0V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	400	540	680		
	HO turn-off to LO turn-on (DTHO-LO)					
MDT	Deadtime matching = DTLO-HO - DTHO-LO	_	0	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, V_{SS} = COM, DT= V_{SS} and V_{AB} and V_{AB} = 25°C unless otherwise specified. The V_{IL} , V_{IH} and V_{IL} and $V_{$

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage for HIN & LIN	2.9	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage for HIN & LIN	_	_	0.8	V	V _{CC} = 10V to 20V
V _{OH}	High level output voltage, V _{BIAS} - V _O	-	0.8	1.4	·	I _O = 20 mA
V _{OL}	Low level output voltage, VO	-	0.3	0.6		I _O = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μΑ	V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current	_	5	20		HIN = 5V, LIN = 5V
I _{IN-}	Logic "0" input bias current	_	1	2	- μ A	HIN = 0V, LIN = 0V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	10		
V _{BSUV+}	threshold					
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0	V	
V _{BSUV} -	threshold					
V _{CCUVH}	Hysteresis	0.3	0.7	_		
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	97	200	_		$V_O = 0V$,
					mA	PW ≤ 10 μs
I _O -	Output low short circuit pulsed current	250	350	-	11174	$V_0 = 15V$,
						PW ≤ 10 μs


Functional Block Diagram

Lead Definitions

Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), in phase
V _B	High side floating supply
НО	High side gate driver output
VS	High side floating supply return
V _C C	Low side and logic fixed supply
LO	Low side gate driver output
COM	Low side return

Lead Assignments

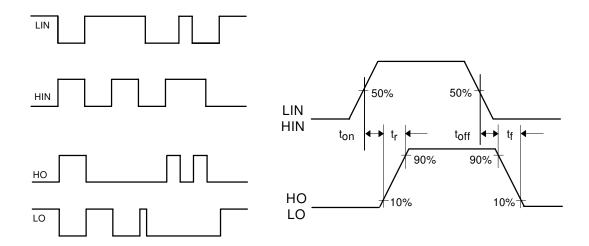


Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

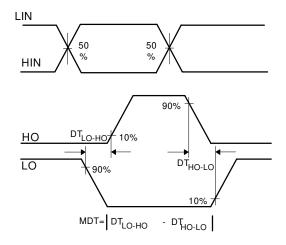
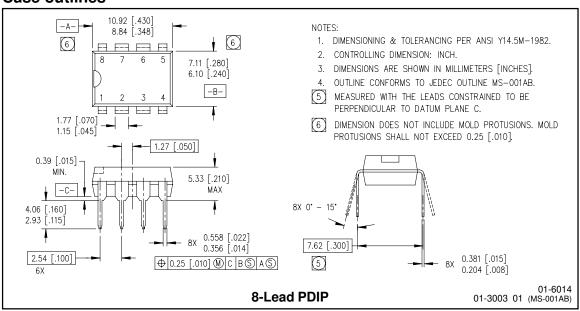
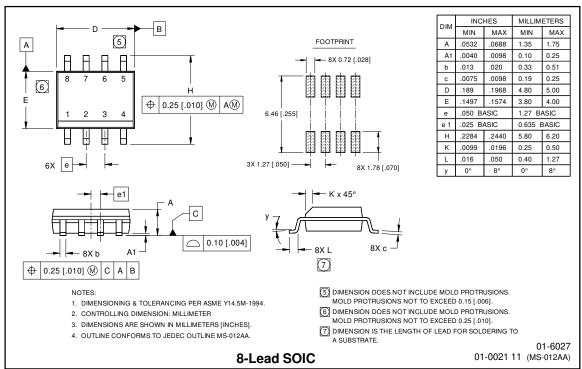


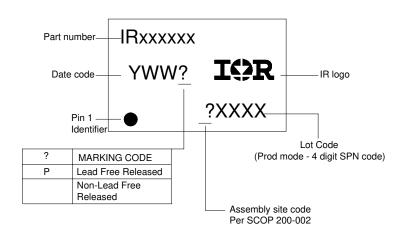
Figure 3. Deadtime Waveform Definitions

International


IOR Rectifier


IR WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 3/19/2003


IR2308(S) & (PbF)

Case outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2308 order IR2308 8-Lead SOIC IR2308S order IR2308S

Leadfree Part

8-Lead PDIP R2308 not available 8-Lead SOIC IR2308S order IR2308SPbF

International TOR Rectifier

Thisproduct has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web Site http://www.irf.com

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
6/15/2004