: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

IR2E46Y

Description

IR2E46Y incorporates the illumination driver and the flash driver for an RGB-LED, and is equipped with the step-up DC/DC converter.
This product is optimum for use as the RGB-LED driver IC for PDA and cellular phone applications, etc.

■Features

1.Power supply: 2.7 V to 4.5 V
2.Supports I2C-bus interface

The $\mathrm{I}^{2} \mathrm{C}$ address extension function enables simultaneous controlling of four devices.
3.SCL pin and SDA pin are installed with noise filters.
4.Sink-type variable constant current driver for RGB-LED (maximum current $155 \mathrm{~mA} \times 3 \mathrm{ch}$)
Stroboscopic mode: 0 mA to 155 mA
(32 steps per output, 5.0 mA STEP)
Illumination mode: 0 mA to 31.5 mA
(64 steps per output, 0.5 mA STEP)
5.VF control circuit embedded (VDD to 13 V)
6.LED brightness adjustment circuit embedded (16 steps, PWM control)
7.Stroboscopic timer embedded
8. Independent RGB control output enable circuit embedded
9.Current slope control circuit embedded
10.Voltage/current PWM control type step-up DC/DC converter circuit embedded (oscillatory frequency 1.2 MHz)
11.Low ON resistance switch (0.2Ω TYP.)
12.SW transistor overcurrent protection circuit embedded
13. Voltage reference embedded
14.Stand-by circuit embedded
15.Power-on-reset circuit embedded
16.UVLO circuit embedded
17.Digital soft-start circuit embedded
18.Thermal shutdown circuit embedded

Illumination and Flash RGB-LED Driver

Agency approvals/Compliance

1. Compliant with RoHS directive(2002/95/EC)

Applications

1.Torch light and illuminations (RGB LED)

■ Block diagram

Outline Dimensions
(Note)It is those with an underline printing in a date code because of a LEAD-FREE type.

Package name
WLP033-X-3636
Lead finish or Ball type : LEAD FREE TYPE (Sn-3Ag-0.5Cu) *Use of an "Under-fill"
(Note) Body dimensions do not include burr of resin.
*Use of an "Under-fill": Since the external terminals are arranged at intervals of 0.5 mm , SHARP recommends use of appropriate "Under fill" to this product for high reliability.

Markings.

IR2E46Y
-Terminal Name

Pin No	Pin name	Description
A1	U1	Non-connect. This terminal is connected pin No. F1(U1).
A2	ENG	Enable input terminal for G.
A3	ENB	Enable input terminal for B.
A4	LX1	SW Tr. drain terminal.
A5	LX2	SW Tr. drain terminal.
A6	U2	Non-connect. This terminal is connected pin No. F6(U2).
B1	R	Constant current output terminal for red LED.
B2	VDD2	Power supply terminal (digital).
B3	ENR	Enable input terminal for R.
B4	PGND	Power ground.
B5	CS1	SW Tr. Source terminal.
B6	CS2	SW Tr. Source terminal.
C1	G	Constant current output terminal for green LED.
C2	B	Constant current output terminal for blue LED.
C3	NC	Non-connect.
C5	CSS	SW Tr. source terminal (current sense terminal).
C6	SWGND	SW Tr. source terminal (current sense terminal).
D1	LEDGND	LED ground.
D2	ADD1	$\mathrm{I}^{2} \mathrm{C}$ address extension input terminal.
D5	EO	Error amplifier output terminal.
D6	AGND	Analog ground.
E1	STRIG	Stroboscopic timer trigger input terminal.
E2	SDA	$\mathrm{I}^{2} \mathrm{C}$ Data Input/Output.
E3	XSTBY	Stand-by input terminal.
E4	EI	Error amplifier reference input terminal.
E5	FB	Output voltage feedback input terminal.
E6	ES	Error amplifier negative input terminal.
F1	U1	Non-connect. This terminal is connected pin No. A1(U1).
F2	ADD0	$\mathrm{I}^{2} \mathrm{C}$ address extension input terminal.
F3	SCL	$\mathrm{I}^{2} \mathrm{C}$ Clock.
F4	IREF	Resistor connection terminal for reference current setting.
F5	VDD1	Power supply terminal (analog).
F6	U2	Non-connect. This terminal is connected pin No. A6(U2).

■Pin Assignment

	1	2	3	4	5	6
A	U1	ENG	ENB	LX1	LX2	U2
B	R	VDD2	ENR	PGND	CS1	CS2
C	G	B	NC		CSS	SWGND
D	LEDGND	ADD1			EO	AGND
E	STRIG	SDA	XSTBY	EI	FB	ES
F	U1	ADD0	SCL	IREF	VDD1	U2

Note: Pins are located on the underside.

■Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Conditions
Power supply	VDD1,VDD2	6.0	V	
Terminal voltage	LX1,LX2,LX3,LX4	-0.3 to 22.0	V	
	$\mathrm{FB}, \mathrm{G}, \mathrm{B}$			
	R	-0.3 to 6.0		
	Others	-0.3 V to VDD +0.3		
Output current	$\mathrm{R}, \mathrm{G}, \mathrm{B}$	$155 \times 3 \mathrm{ch}$	mA	
Power dissipation	Pd	1667	mW	$\mathrm{Ta} \leq 25^{\circ} \mathrm{C}$ Note 1
Derating ratio	$\Delta \mathrm{Pd}$	16.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta}>25^{\circ} \mathrm{C}$ Note 1
Operating temperature range	Topr	-30 to 85	${ }^{\circ} \mathrm{C}$	
Storage temperature range	Tstg	-55 to 125	${ }^{\circ} \mathrm{C}$	

Note1: Free convection,on-board,compiled with SEMI42-996

■Recommended Operating Condition

Parameter	Symbol	Value	Unit	Conditions
Power supply	VDD1, VDD2	2.7 to 4.5	V	
Terminal voltage	$\begin{gathered} \text { LX1,LX2,LX3,LX4 } \\ \text { FB,G, B } \end{gathered}$	0 to 13	V	
	R	0 to 4.5		
	Others	0 to VDD		
$\mathrm{I}^{2} \mathrm{C}$ communication frequency	fCLK	3.4	MHz	
Switching frequency	foSC	1.2	MHz	

IR2E46Y

■Electric Characteristics

See the Block Diagram unless otherwise specified.
$\mathrm{VDD} 1=\mathrm{VDD} 2=3.6 \mathrm{~V}, \mathrm{ENR}=\mathrm{ENG}=\mathrm{ENB}=\mathrm{XSTBY}=3.6 \mathrm{~V}, \mathrm{ADD} 0=\mathrm{ADD} 1=\mathrm{STRIG}=0 \mathrm{~V}, \mathrm{R}=\mathrm{G}=\mathrm{B}=1.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
$\mathrm{I}^{2} \mathrm{C}$ register setting: $\mathrm{XSTB}=1, \mathrm{BOOST}=1$
The current direction is regarded positive when entering the IC and negative when exiting.
Current consumption

Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
Stand-by supply current	ISS	XSTBY $=0 \mathrm{~V}$ or XSTB $=0$	-	1	3	$\mu \mathrm{~A}$
Supply current	IDD	BOOST $=0$	0.8	1.3	1.8	mA

Step-up DC/DC converter circuit

Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
Conversion efficiency	PEff			85		$\%$
Switch ON resistance	RDSON		0.1	0.2	0.3	Ω
Switching frequency	fOSC		1.0	1.2	1.4	MHz
Maximum duty	DT			85		$\%$
FET current limiting voltage	VCL	Voltage between CCS pin and SWGND pin	84	120	156	mV
SW Tr. OFF leak current	ILEAKSW	XSTBY=0V or XSTB=0 LX1, LX2=20V		1	5	$\mu \mathrm{~A}$

ENR pin, ENG pin, ENB pin, STRIG pin, SDA pin, SCL pin, ADD0 pin, ADD1 pin

Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
High level input voltage	VIH		0.8 VDD	-	VDD	V
Low level input voltage	VIL		0	-	0.2 VDD	V
High level input current	IIH		-1	-	1	$\mu \mathrm{~A}$
Low level input current	IIL		-1	-	1	$\mu \mathrm{~A}$
Hysteresis voltage	Vhys	SDA pin, SCL pin, ADD0 pin ADD1 pin, and STRIG pin		0.05 VDD		V
ENx pulse width	PWEN	Duration when ENx is "H" or "L"	1.0	-	-	$\mu \mathrm{s}$
SDA output terminal voltage	VOL	IOL=3mA	-	0.2	0.4	V

XSTBY pin

Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
High level input voltage	VIH		1.44	-	VDD	V
Low level input voltage	VIL		0	-	0.90	V
High level input current	IIH		-1	25	75	$\mu \mathrm{~A}$
Low level input current	IIL		-1	-	1	$\mu \mathrm{~A}$
UVLO circuit						
Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
UVLO threshold voltage	TUTh		2.15	2.35	2.55	V
UVLO hysteresis	UVHys			100		mV

Thermal shutdown circuit

Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
Operation stop temperature			150			${ }^{\circ} \mathrm{C}$

IR2E46Y

Constant current driver circuit

Parameter	Symbol	Measurement condition	MIN.	TYP.	MAX.	Unit
R output current (stroboscopic mode)	IoRS	RSDUTY[00000], R=1, S/I=1	-	1.0	5.0	$\mu \mathrm{A}$
		RSDUTY[00001], R=1, S/I=1	0.0	5.0	15.0	mA
		RSDUTY[00010], R=1, S/I=1	5.0	10.0	20.0	mA
		RSDUTY[00100], R=1, S/I=1	10.0	20.0	30.0	mA
		RSDUTY[01000], R=1, S/I=1	30.0	40.0	50.0	mA
		RSDUTY[10000], $\mathrm{R}=1, \mathrm{~S} / \mathrm{I}=1$	70.0	80.0	90.0	mA
		RSDUTY[11111], R=1, S/I=1	139.5	155.0	170.5	mA
R output current (illumination mode)	IoRI	RIDUTY[000000], $\mathrm{R}=1$	-	1.00	5.00	$\mu \mathrm{A}$
		RIDUTY[000001], $\mathrm{R}=1$	0.00	0.50	1.50	mA
		RIDUTY[000010], $\mathrm{R}=1$	0.50	1.00	2.00	mA
		RIDUTY[000100], $\mathrm{R}=1$	1.00	2.00	3.00	mA
		RIDUTY[001000], $\mathrm{R}=1$	3.00	4.00	5.00	mA
		RIDUTY[010000], $\mathrm{R}=1$	7.00	8.00	9.00	mA
		RIDUTY[100000], $\mathrm{R}=1$	15.00	16.00	17.00	mA
		RIDUTY[111111], $\mathrm{R}=1$	28.35	31.50	34.65	mA
G output current (stroboscopic mode)	IoGS	GSDUTY[00000], G=1, S/I=1	-	1.0	5.0	$\mu \mathrm{A}$
		GSDUTY[00001], G=1, S/I=1	0.0	5.0	15.0	mA
		GSDUTY[00010], G=1, S/I=1	5.0	10.0	20.0	mA
		GSDUTY[00100], G=1, S/I=1	10.0	20.0	30.0	mA
		GSDUTY[01000], G=1, S/I=1	30.0	40.0	50.0	mA
		GSDUTY[10000], G=1, S/I=1	70.0	80.0	90.0	mA
		GSDUTY[11111], G=1, S/I=1	139.5	155.0	170.5	mA
G output current (illumination mode)	IoGI	GIDUTY[000000], G=1	-	1.00	5.00	$\mu \mathrm{A}$
		GIDUTY[000001], G=1	0.00	0.50	1.50	mA
		GIDUTY[000010], G=1	0.50	1.00	2.00	mA
		GIDUTY[000100], G=1	1.00	2.00	3.00	mA
		GIDUTY[001000], G=1	3.00	4.00	5.00	mA
		GIDUTY[010000], G=1	7.00	8.00	9.00	mA
		GIDUTY[100000], G=1	15.00	16.00	17.00	mA
		GIDUTY[111111], $\mathrm{G}=1$	28.35	31.50	34.65	mA
B output current (stroboscopic mode)	IoBS	BSDUTY[00000], $\mathrm{B}=1, \mathrm{~S} / \mathrm{I}=1$	-	1.0	5.0	$\mu \mathrm{A}$
		BSDUTY[00001], $\mathrm{B}=1, \mathrm{~S} / \mathrm{I}=1$	0.0	5.0	15.0	mA
		BSDUTY[00010], $\mathrm{B}=1, \mathrm{~S} / \mathrm{I}=1$	5.0	10.0	20.0	mA
		BSDUTY[00100], $\mathrm{B}=1, \mathrm{~S} / \mathrm{I}=1$	10.0	20.0	30.0	mA
		BSDUTY[01000], B=1, S/I=1	30.0	40.0	50.0	mA
		BSDUTY[10000], $\mathrm{B}=1, \mathrm{~S} / \mathrm{I}=1$	70.0	80.0	90.0	mA
		BSDUTY[11111], $\mathrm{B}=1, \mathrm{~S} / \mathrm{I}=1$	139.5	155.0	170.5	mA
B output current (illumination mode)	IoBI	BIDUTY[000000], $\mathrm{B}=1$	-	1.00	5.00	$\mu \mathrm{A}$
		BIDUTY[000001], $\mathrm{B}=1$	0.00	0.50	1.50	mA
		BIDUTY[000010], $\mathrm{B}=1$	0.50	1.00	2.00	mA
		BIDUTY[000100], $\mathrm{B}=1$	1.00	2.00	3.00	mA
		BIDUTY[001000], $\mathrm{B}=1$	3.00	4.00	5.00	mA
		BIDUTY[010000], B=1	7.00	8.00	9.00	mA
		BIDUTY[100000], $\mathrm{B}=1$	15.00	16.00	17.00	mA
		BIDUTY[111111], $\mathrm{B}=1$	28.35	31.50	34.65	mA
R terminal leak current	ILEAKR	Terminal voltage $=4.5 \mathrm{~V}$		1	5	$\mu \mathrm{A}$
G terminal leak current	ILEAKG	Terminal voltage $=15 \mathrm{~V}$		1	5	$\mu \mathrm{A}$
B terminal leak current	ILEAKB	Terminal voltage $=15 \mathrm{~V}$		1	5	$\mu \mathrm{A}$

- ${ }^{2}$ C-BUS Interface timing characteristics

All specified output timings are based on 20% and 80% of VDD.
Fs-mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCL clock frequency	fSCL		0	-	400	kHz
Hold time(repeated) START condition	$\mathrm{tHD} ; \mathrm{STA}$		600	-	-	ns
LOW period of the SCL clock	tLOW		1300	-	-	ns
HIGH period of the SCL clock	tHIGH		600	-	-	ns
Data set-up time	$\mathrm{tSU} ; \mathrm{DAT}$		100	-	-	ns
Data hold time	$\mathrm{tHD} ; \mathrm{DAT}$		0	-	900	ns
SCL and SDA rise time	tr	Note 1.	$20+0.1 \mathrm{Cb}$	-	300	ns
SCL and SDA fall time	tf	Note 1.	$20+0.1 \mathrm{Cb}$	-	300	ns
Capacitive load represented by each bus line	Cb		-	-	400	pF
Set-up time for STOP condition	$\mathrm{tSU} ; \mathrm{STO}$		600	-	-	ns
Tolerable spike width on bus	tSP		-	-	50	ns
Bus free time between START and STOP condition	tBUF		1300	-	-	ns
Noise margin at the LOW level for each connected device (including hysteresis)	VnL		0.1 VDD	-	-	V
Noise margin at the HIGH level for each connected device (including hysteresis)	VnH		0.2 VDD	-	-	V

Hs-mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCL clock frequency	fSCLH		0	-	3.4	MHz
Set-up time(repeated) START condition	tSU;STA		160	-	-	ns
Hold time(repeated) START condition	tHD;STA		160	-	-	ns
LOW period of the SCL clock	tLOW		160	-	-	ns
HIGH period of the SCL clock	tHIGH		60	-	-	ns
Data set-up time	tSU;DAT		10	-	-	ns
Data hold time	tHD;DAT		20	-	70	ns
Rise time of the SCL signal	trCL		10	-	40	ns
Rise time of the SCL signal after the acknowledge bit	trCL1		10	-	80	ns
Fall time of the SCL signal	tfCL		10	-	40	ns
Rise time of the SDA signal	trDA		10	-	80	ns
Fall time of the SCL signal	tfCL1		10	-	80	ns
Set-up time for STOP condition	tSU;STO		160	-	-	ns
Capacitive load for the SDA and SCL lines	Cb		-	-	100	pF
Capacitive load for the SDA and SCL lines	Cb2		-	-	400	pF
Tolerable spike width on bus	tSP		-	-	5	ns
Noise margin at the LOW level for each connected device (including hysteresis)	VnL		0.1 VDD	-	-	V
Noise margin at the HIGH level for each connected device (including hysteresis)	VnH		0.2 VDD	-	-	V

Note 1: $\mathrm{Cb}=100 \mathrm{pF}$ total capacitance of one bus line.

Fig. $1 I^{2} \mathbf{C}$-Bus timing diagram (Fs-mode)

Fig. 2 I $^{2} \mathrm{C}$-Bus timing diagram (Hs-mode)

Example of typical characteristics

Fig. 3 fOSC vs. VDD

Fig. 5 IDD vs. VDD

Fig. 4 fOSC vs. temperature

Fig. 6 IDD vs. temperature

Fig. 7 IOUT(R) vs. Terminal voltage

Fig. 8 IOUT(B) vs. Terminal voltage

Fig. 9 IOUT(G) vs. Terminal voltage

Voltage and current pulse of pre illuminating (RGB each 20 mA) to flashing ($\mathrm{R}=80 \mathrm{~mA}, \mathrm{G}=120 \mathrm{~mA}, \mathrm{~B}=75 \mathrm{~mA}$).
Pin: VDD $1=\mathrm{VDD} 2=3.6 \mathrm{~V}, \mathrm{ENR}=\mathrm{ENG}=\mathrm{ENB}=\mathrm{XSTBY}=3.6 \mathrm{~V}, \mathrm{ADD} 0=\mathrm{ADD} 1=\mathrm{STRIG}=0 \mathrm{~V}$
Resister setting: RSLSET:h'F1, GBSLSET: h'01, STSET: h'10, RGSDSET:h'10, GBSDSET: h'3F, RIDSET: h'E8, GIDSET: h'E8, BIDSET: h'E8, RONSET: h'80, START: h'9F
Stroboscopic trigger: START:h'3F

Cautions

- Connect the power supply terminals (VDD1 pin and VDD2 pin) with the shortest distance and set terminals same potential.
- Connect the grounding terminals (PGND pin, SWGND pin, AGND pin, and LEDGND pin) with the shortest distance and set terminals same potential.
- Connect the LX terminals (LX1 pin, LX2 pin) with the shortest distance and set terminals same potential.
- Connect the CS terminals (CS1 pin, CS2 pin, and CSS pin) with the shortest distance and set terminals same potential.
- It is recommended to install a capacitor between the power supply terminal and grounding terminal.
- Position a bypass capacitor between the power supply terminal and grounding terminal close to the IC and use broad patterns.
- It is recommended to install an approximately $1000-\mathrm{pF}$ capacitor between the Power supply terminal and ENx pin for countermeasure against static electricity.
- Use a broad and short patterns for the line that is connected from CVIN GND to CVIN GND through L and RCS.
- Position the Schottky-barrier diode (SBD) close to the CVOUT.
- Use patterns as broad and as short as possible for the power supply lines and grounding lines.
- Don't set input terminals (ENR pin, ENG pin, ENB pin, STRIG pin, SDA pin, SCL pin, ADD0 pin, and ADD1pin) floating.
- Apply the voltage to input terminals (ENR pin, ENG pin, ENB pin, STRIG pin, SDA pin, SCL pin, ADD0 pin, and ADD1pin) with input voltage range specified electric characteristics.
- In any cases including the timing of power on and power off, do not use absolute maximum ratings.
- Continuous running with the maximum output power may be caused exceeding maximum power dissipation. Be careful not to exceed maximum power dissipation in consideration of heat transfer resistance of a mounting board, ambient air temperature, and output electric power.
- Position the RIREF close to the IC to circumvent the effect of noise.

Important Notices

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
--- Personal computers
--- Office automation equipment
--- Telecommunication equipment [terminal]
--- Test and measurement equipment
--- Industrial control
--- Audio visual equipment
--- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection
with equipment that requires higher reliability such as:
--- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
--- Traffic signals
--- Gas leakage sensor breakers
--- Alarm equipment
--- Various safety devices, etc.
(iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
--- Space applications
--- Telecommunication equipment [trunk lines]
--- Nuclear power control equipment
--- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

