: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

PROGRAMMABLE CURRENT SENSING HIGH SIDE SWITCH

Features

- Load current feedback
- Programmable over current shutdown
- Active clamp
- E.S.D protection
- Input referenced to Vcc
- Over temperatue shutdown
- Reverse battery protection

Description

The IR 3310(S) is a Fully Protected 4 terminal high side switch. The input signal is referenced to Vcc. When the input voltage Vcc - Vin is higher than the specified Vih threshold, the output power MOSFET is turned-on. When Vcc - Vin is lower than the specified Vil threshold, the output MOSFET is turned-off. A sense current proportional to the current in the power Mosfet is sourced to the lfb pin. Over-current shutdown occurs when Vfb - Vin > 4.5 V. The current shutdown threshold is adjusted by selecting the proper RIfb. Either over-current and over-temperature latches off the switch. The device is reset by pulling the input pin high. Other integrated protections (ESD, reverse battery, active clamp) make the IR 3310(S) very rugged and suitable for the automotive environment.

Product Summary

$\mathrm{R}_{\mathrm{ds}(\text { on })}$	$7 \mathrm{~m} \Omega$ max.
$\mathrm{V}_{\text {cc.op. }}$	6 to 28 V
Current ratio	8800
Ishutdown 10 to 100 A	
Active clamp	35 V
Load Dump	40 V

Package

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to Vcc lead. (TAmbient $=25^{\circ} \mathrm{C}$ unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vcc - Vin max	Maximum input voltage	-16	50	
Vcc-VIfb max	Maximum Ifb voltage	-0.3	50	V
Vcc - Vout max.	Maximum output voltage	-0.3	33	
Ids cont.	Diode max. permanent current (Rth $\left.=60^{\circ} \mathrm{C} / \mathrm{W}\right)(1)$	-	2.8	
Ids1 cont	Diode max. permanent current (Rth $\left.=5^{\circ} \mathrm{C} / \mathrm{W}\right)(1)$	-	35	A
Ids pulsed	Diode max. pulsed current (1)	-	100	
ESD 1	Electrostatic discharge (human body model)C=100pF, R=1500 Ω	-	4	kV
ESD 2	Electrostatic discharge (machine model)C=200pF, R=0 $\Omega, \mathrm{L}=10 \mu \mathrm{H}$	-	0.5	
Pd	Power dissipation (Rth $\left.=60^{\circ} \mathrm{C} / \mathrm{W}\right)$	-	2	W
TJ max.	Max. storage and junction temperature	-40	150	${ }^{\circ} \mathrm{C}$
Min RIfb	Minimum resistor on the lfb pin	0.3	-	$\mathrm{k} \Omega$
Ifb max	Max. Ifb current	-20	+20	mA

Thermal Characteristics

Symbol	Parameter	Typ.	Max.	Units
Rth 1	Thermal resistance junction to Ambient - TO220	60	-	
Rth 2	Thermal resistance junction to case - TO220	0.7	-	
Rth 1	Thermal resistance with standard footprint - SMD220	60	-	
Rth 2	Thermal resistance with 1" square footprint - SMD220	35	-	
Rth 3	Thermal resistance junction to case - SMD220	0.7	-	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
Vcc -Vin $^{\text {Vcc -VIfb }}$	Continuous input voltage	6	28	V
Vcc	Continuous Ifb pin voltage	0.3	28	
lout	Supply to power ground voltage	6	28	
lout $85^{\circ} \mathrm{C}$ amb.	Continuous output current ($\left.\mathrm{Rth} / \mathrm{amb}<5^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Tj}=125^{\circ} \mathrm{C}\right)$	-	23	A
Rlfb	Continuous output current (Rth/amb $\left.<60^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{Tj}=125^{\circ} \mathrm{C}\right)$	-	6.5	
Pulse min.	Ifb resistor to program Isd and scale $(2 \& 3)$	0.5	3.5	$\mathrm{k} \Omega$
Fmax	Minimum turn-on pulse width	1	-	ms
Fmax Prot.	Maximum operating frequency	-	500	Hz

1) Limited by junction temperature. Pulsed current is also limited by wiring
2) $<500 \mathrm{Ohm}$ or shorting Ifb to gnd may damage the part with Isd around 120A
3) >5000 Ohm or leaving lfb open will shutdown the part. No current will flow in the load.

Protection Characteristics

$\mathrm{Tj}=25^{\circ} \mathrm{C}$ (unless otherwise specified), RIfb $=500$ to 5 kOhm .

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
VIfb -Vin @ Isd	Over-current shutdown threshold		4	4.5	5.4	V
Tsd	Over-temp. shutdown threshold	-	165	-	${ }^{\circ} \mathrm{C}$	see Fig. 7
Treset	Protection reset time	-	50	300	$\mu \mathrm{~S}$	see Fig. 7
OV	Over voltage shutdown (not latched)	33	36	41	V	
Isdf	Fixed over current shutdown	100	120	140	A	Vlfb<Vin
Isd_1k	Adjustable over current shutdown 1K	30	40	50	A	Rlfb=1k
Min.Pulse	Minimum pulse width (no WAIT state)	200	500	1200	$\mu \mathrm{~s}$	see Fig. 6
WAIT	WAIT function timer	0.5	1.2	3.5	ms	see Figs. 6 and 7
Rev.Rdson	Rds(on) reverse battery protection	4	6.2	10	$\mathrm{~m} \Omega$	Vcc-Vin=-12V, lload=15A

Static Electrical Characteristics
($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=14 \mathrm{~V}$ unless otherwise specified.)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
Iq	Total quiescent current (lout +lfb)	-	22	50	$\mu \mathrm{A}$	$\begin{gathered} \text { Vcc-Vin }=0, \text { Vcc-Vout }=12 \mathrm{~V} \\ \text { Vcc-VIfb }=12 \mathrm{~V} \\ \hline \end{gathered}$
lin	Input current	1.5	4	6	mA	$\mathrm{Vcc}-\mathrm{Vin}=14 \mathrm{~V}$
Vih	High level input threshold voltage (4)	-	5	5.5		
Vil	Low level input threshold voltage (4)	3.5	4	-	V	
Vhys	Input hysterisis = Vih-Vil	0.4	1	1.5		
lout qs	Output quiescent current	-	9	15	$\mu \mathrm{A}$	Vcc-Vin=0; Vcc-VIfb=0; Vcc-Vout=12V
Rds1 on	ON state resistance (5)	4	5.5	7		lout=30A, Vcc-Vin=14V
Rds2 on	ON state resistance (5)	4	5.7	10	$\mathrm{m} \Omega$	lout=17A, Vcc -Vin=6V
Rds3 on	ON state resistance (5)	7	10.5	13.5		lout $=30 \mathrm{~A}, \mathrm{Tj}=150^{\circ} \mathrm{C}$
Vclamp1	Vcc to Vout active clamp voltage	33	35	-		lout $=10 \mathrm{~mA}$
Vclamp2	Vcc to Vout active clamp voltage	-	36	40		lout $=30 \mathrm{~A}, \mathrm{Vcc}-\mathrm{VIfb}<20 \mathrm{~V}$
Vsd	Body diode forward voltage	-	0.85	1	V	lout=5A
Vaval.	Vcc to Vout avalanche voltage	40	43	50		lout $=100 \mathrm{~mA}, \mathrm{Vcc}-\mathrm{Vfb}>35 \mathrm{~V}$

Switching Electrical Characteristics

$V_{C C}=14 \mathrm{~V}$, Resistive Load $=0.4 \Omega, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (unless otherwise specified).

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to Vcc-Vout= 0.9 Vcc	1	8	30	$\mu \mathrm{s}$	see figure 2
Tr1	Rise time to Vcc-Vout=5V	0.4	2	10		
Tr2	Rise time to $\mathrm{Vcc}_{\text {cc }}-\mathrm{V}_{\text {out }}=0.1 \mathrm{~V}_{\mathrm{cc}}$	10	30	100		
$\mathrm{E}_{\text {on }}$	Turn ON energy	-	3	6	mJ	
Td ${ }_{\text {off }}$	Turn-off delay to $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {out }}=0.1 \mathrm{~V}_{\text {cc }}$	10	30	100	$\mu \mathrm{s}$	see figure 3
T_{f}	Fall time to Vcc-Vout $=0.9 \mathrm{~V}_{\mathrm{cc}}$	-	15	-		
Eoff	Turn OFF energy	-	2	4	mJ	

4) Input thresholds are measured directly between the input pin and the tab. Any parasitic resistance in common between the load current path and the input signal path can significantly affect the thresholds.
5) Rds(on) is measured between the Tab and the Out pin, 5 mm away from the package.

Current Sense Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
Ratio	I load / llfb current ratio	7,500	8,800	10,000	-	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{Rfb}=500 \Omega$, $\mathrm{I}=70 \mathrm{~A}$
Ratio_TC	Iload/Ifb variation over temperature	-5	0	+5	$\%$	$\mathrm{~T}_{\mathrm{j}}=-40 \mathrm{~T} 0+150^{\circ} \mathrm{C}$
offset	Load current diagnostic offset	-1.3	0	+1.3	A	$\mathrm{I}=2 \mathrm{~A}$
Trst	Ifb response time (low signal)	-	5	15	$\mu \mathrm{~s}$	90% of the I load step

Functional Block Diagram

Internationa
IR3310(S)
IOR Rectifier

Lead Assignments

	$\begin{aligned} & 1-\text { In } \\ & 2-\text { Ifb } \\ & 3-\text { Vcc (tab) } \\ & 4-\text { NC } \\ & 5-\text { Out } \end{aligned}$	5 Lead - D²PAK (SMD220)
IR3310		IR3310S
Part Number		

Figure 1 - Voltages and currents definitions

Figure 2 - Switching time definitions (turn-on)

Figure 3 - Switching time definitions (turn-off)

Figure 4 - Active clamp waveforms

Precise measurement

Figure 6 - Minimum pulse \& WAIT function

Figure 5-Current sense precision:
Accurate measurement only when the power Mosfet is fully ON

Figure 7 - Protection Timing Diagrams

All curves are typical characteristics. Operation in hatched areas is not recommended. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{Rlfb}=500 \mathrm{Ohm}$, $\mathrm{Vcc}=14 \mathrm{~V}$ (unless otherwise specified).

Figure 8 - Icc (mA) vs Vcc-Vin (V)

Figure 9- Rdson (m Ω) vs Vcc-Vin (V)

Figure 10 -Normalized Rdson (\%) vs $\mathrm{Tj} \quad\left({ }^{\circ} \mathrm{C}\right)$

Figure 12 - Error (+/-A) vs lload (A)

Figure 11 - Vih, Vil \& Vifb -Vin (V) vs $\left.\mathrm{Tj}^{(}{ }^{\circ} \mathrm{C}\right)$

Figure 13-Isd (A) vs Rlfb (Ohm)

Figure 14 - Max. DC current (A) vs Temp. (${ }^{\circ} \mathrm{C}$)

Figure 16 - I out (A) vs Protection resp. Time (s)

Figure 15 - Max. I (A) vs inductance (mH)

Figure 17 - Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$) vs Time (s)

IR3310(S)

Case Outline - TO220 (5 lead)

Case Outline 5 Lead - D2PAK (SMD220)

IR3310(S)

Tape \& Reel 5 Lead - D2PAK (SMD220)

International
IgR Rectifier
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q100] market. 7/24/2004

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

