imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Sup*IR*Buck™

USER GUIDE FOR IR38060 EVALUATION BOARD

DESCRIPTION

The IR38060 is a synchronous buck converter with a PMBus interface, providing a compact, high performance and flexible solution in a small 5mmx6mm PQFN package.

Key features offered by the IR38060 include I2C/PMBus configurability of output voltage, soft-start, input UVLO, input overvoltage protection, output overvoltage protection, output overcurrent protection, Power Good, thermal protection and switching frequency. Additionally, the IR38060 also features enhanced line/ load regulation with feed forward, external frequency synchronization with smooth clocking, internal LDO, true differential remote sensing and pre-bias start-up. A temperature and bias compensated output over-current protection function is implemented by sensing the voltage developed across the on-resistance of the synchronous rectifier MOSFET for optimum cost and performance.

This user guide contains the schematic and bill of materials for the IR38060 evaluation board. The guide describes operation and use of the evaluation board itself. Detailed application information for IR38060 is available in the IR38060 data sheet.

BOARD FEATURES

- PVin = +12V (+ 13.2V Max), No Vcc required.
- V_{out} = +1.2V @ 0-6A
- F_s= 600kHz
- L= 0.82uH
- •C_{in}= 3x22uF (ceramic 1206) + 1x330uF (electrolytic, optional)
- C_{out}=7x22uF (ceramic 0805)

CONNECTIONS and OPERATING INSTRUCTIONS

A well regulated +12V input supply should be connected to PVin+ and PVin-. A maximum of 6A load should be connected to VOUT+ and VOUT-. The inputs and output connections of the board are listed in Table I.

IR38060 needs only one input supply and internal LDO generates Vcc from PVin. Another internal LDO generates the 1.8V needed by the internal digital circuits. If operation with external Vcc is required, then R25 should be removed and external Vcc can be applied between Vcc+ and Vcc- pins. Vin pin and Vcc pins should be shorted together for external Vcc operation by installing R24. For normal, non-tracking operation, R27 should not be populated and a 100 kOhm resistor should be connected from the Track En pin to P1V8.

The board is configured for remote sensing. If local sense is desired, R8 should be uninstalled and R16 should be installed instead.

I2C/PMBus communication is established through the 4 pin header which allows connection to the SCL/SDA/SALERT and GND lines from the host/dongle. For proper operation in digital communications mode, R35 must always be populated.

External Enable signal can be applied to the board via exposed Enable pad and <u>R18 should be removed for</u> this purpose.

Connection	Signal Name
PVin+	PVin (+12V)
PVin-	Ground of Pvin
Vout+	Vout(+1.2V)
Vout-	Ground for Vout
Vcc+	Vcc Pin
Vcc-	Ground for Vcc input
Enable	Enable
PGood	Power Good Signal

Table I. Connections

LAYOUT

The PCB is a 4-layer board. All of layers are 2 Oz. copper. The IR38060 and most of the passive components are mounted on the top side of the board. Power supply decoupling capacitors and feedback components are located close to IR38060. The feedback resistors are connected to the output of the remote sense amplifier of the IR38060 and are located close to the IR38060. To improve efficiency, the circuit board is designed to minimize the length of the on-board power ground current path. Separate power ground and analog ground are used and may be connected together using a 0 ohm resistor.

CONNECTION DIAGRAM

Top View

Bottom View

International

IRDC38060-P1V2

R60 =100K is not present in evauluation boards older than Revision B

Fig. 1: Schematic of the IR38060 evaluation board

3/21/2017

Bill of Materials

Item	Quant					
Number	ity	Part Reference	Value	Description	Manufacturer	Part Number
				SMD Electrolytic, F size, 25V,		
1	1	C1	330uF	20%	Panasonic	EEE-FK1E331P
2	1	C8	2200pF	2200pF, 0603, 50V, NPO	TDK	C1608C0G1H222J
3	1	C11	270pF	50V, 0603, NP0, 5%	Murata	GRM1885C1H271JA01D
4	1	C26	10nF	0603, 50V, X7R, 10%	Murata	GRM188R71H103KA01D
5	3	C29 C30 C31	22uF	22uF, 1206, 25V, X5R, 20%	TDK	C3216X5R1E226M160AB
6	4	C10 C36 C42 C53	0.1uF	0603, 50V, X7R, 10%	Panasonic	ECJ-1VB1H104K
7	1	C35	1uF	0603, X5R, 25V, 20%	TDK	C1608X5R1E105M
		C43 C44 C45 C46		0805, 6.3V, X5R, 20%		
8	7	C47 C48 C49	22uF		Murata	GRM21BR60J226ME39
		LGND 1.8V ADDR				
		EN/FCCM IMON				
		PGND PGOOD SW				
		SYNC TMON				
		VCC+ VCC- VDDQ				
		VIN VIN_+	0.075"			
		VOUT_+ VOUT	SQ_SMT_			
9	19	VP VSENSE	TestPoint			TP-200-125
10	1	.11	Header-4P			
11	1	C41	2.2uF	0603, 10V, X5B, 20%	трк	C1608X5B1A225M080AC
12	1	B19	7.5k	0603.1/10W.1%	Bohm	MCB03EZPEX7501
13	1	11	0.82uH	0.82µH, DCB=4.3mohm	ТОК	SPM6550T-B82M
14	1	B1	2k	0603, 1/10W, 1%	Bohm	MCB03EZPEX2001
15	1	R2	4.02k	0603. 1/10W. 1%	Rohm	MCR03EZPFX4021
16	1	R9	66.5k	0603. 1/10W. 1%	Rohm	MCR03EZPFX6652
17	1	R4	130	0603. 1/10W. 1%	Rohm	MCR03EZPFX1300
18	1	R6	20	0603. 1/10W. 1%	Rohm	CRCW060320R0FKEA
		B8 B10 B11 B14		 ,,,		
		B25_B35_B36_B37				
19	11	R39 R40 R41	0 ohm	0603, 1/10W	Rohm	CRCW06030000Z0EA
20	1	R18	49.9k	0603, 1/10W, 1%	Rohm	MCR03EZPFX4992
21	2	R22 R26	0 ohm	1206. 1/4 W	Panasonic	ERJ-8GEY0R00V
22	2	R23 R31	4.99k	0603. 1/10W. 1%	Rohm	MCR03EZPFX4991
23	1	C80	10uF	0603, 10V, X5R, 20%	Murata	GRM188R61A106ME69D
	İ	-		, , , , , , , , , , , , , , , , , , , ,	International	
24	1	U1	IR38060	IR38060 5mm X 6mm	Rectifier	IR38060

•The electrolytic input capacitor used on this demo board is to eliminate the impact of the parasitic inductance of a long input power cable. It may not be necessarily needed in real applications.

PVin=12.0V, Vout=1.2V, lout=0A-6A, Fs=600kHz, Room Temperature, no airflow

Fig. 2: P_{Vin} Start up at 6A Load Ch₁:P_{Good}, Ch₂:P_{Vin}, Ch₃:V_{out}, Ch₄:Enable

Fig. 4: Operation 80,Turn ON without margining, 6A load Ch₁:P_{Good}, Ch₂:P_{Vin}, Ch₃:V_{out}, Ch₄:Enable

Ch₁:SW node

Fig. 3: P_{Vin} Start up at 6A Load $Ch_1:P_{Good}, Ch_2:P_{Vin}, Ch_3:V_{out}, Ch_4:Vcc$

Fig. 5: Operation 00, Immediate OFF, 6A load Ch₁:P_{Good}, Ch₂:P_{Vin}, Ch₃:V_{out}, Ch₄:Enable

PVin=12.0V, Vout=1.2V, lout=0A-6A, Fs=600kHz, Room Temperature, no airflow

Fig. 8: 0.4V Prebias voltage startup at 0A load Ch_3 :V_{out}, Ch_2 :P_{Good}

Fig. 9: Short-circuit recovery (Hiccup) at 6A load Ch_3 :V_{out}, Ch_1 :P_{Good}

PVin=12.0V, Vout=1.2V, Iout=0A-6A, Fs=600kHz, Room Temperature, no airflow

Fig. 10: Transient response, current step from 0.6A to 2.4A $Ch_3:V_{out}, Ch_4:I_{out}$

Fig. 11: Transient response, current step from 4.2A to 6A $$Ch_3$:V_{out}, Ch_4:I_{out}$$

TYPICAL OPERATING WAVEFORMS PVin=12.0V, Vout=1.2V, lout=0A-6A, Fs=600kHz, Room Temperature, no airflow

Fig. 12: Bode Plot at 0A load Bandwidth = 78.7kHz, Phase Margin = 56.21 Degree

Fig.13: Bode Plot at 6A load Bandwidth = 84.4kHz, Phase Margin = 46.6 Degree

PVin=12.0V, Vout=1.2V, lout=0A-6A, Fs=600kHz, Room Temperature, no airflow

Fig. 16: Thermal Image of the board at 6A load IR38060: 45.47°C, Inductor: 37.26°C, Ambient: 25.36°C

PMBus Command Summary PVin=12.0V, Vout=1.2V, Iout=0A-6A, Fs=600kHz,

0.1	OPERATION	0	45	VOUT UV FAULT RESPONSE	lanore	64	TOFF DELAY	0.0 ms
01	OPERATION	On	46		9,000 4	65	TOFE FALL	6.0 ms
02	ON_OFF_CONFIG	Ox1F	40		5.000 A	70		0.0115
10	WRITE_PROTECT	0x00	4/	IOUT_OC_FAULT_RESPONSE	Immediate off, retry after 20ms	78	STATUS_BITE	UKUU
19	CAPABILITY	0xB0	4A	IOUT_OC_WARN_LIMIT	7.500 A	/9	STATUS_WORD	0x0000
1B	SMBALERT_MASK		4F	OT_FAULT_LIMIT	145 °C	7A	STATUS_VOUT	0x00
	STATUS VOUT	00	50	OT_FAULT_RESPONSE	Inhibit	7B	STATUS_IOUT	0x00
	STATUS IOUT	00	51	OT_WARN_LIMIT	125 °C	7C	STATUS_INPUT	0x00
	STATUS INPUT	00	55	VIN_OV_FAULT_LIMIT	24.000 V	7D	STATUS_TEMPERATURE	0x00
	STATUS TEMPERATURE	00	56	VIN_OV_FAULT_RESPONSE	Ignore	7E	STATUS_CML	0x00
	STATUS CMI	00	58	VIN UV WARN LIMIT	0.50 V	88	READ_VIN	12.156 V
21	VOLT COMMAND	1 199 V	5E	POWER GOOD ON	1.074 V	8B	READ_VOUT	1.191 V
22	VOLIT TRIM	0.000 V	5F	POWER GOOD OFF	1.000 V	8C	READ_IOUT	0.000 A
24	VOUT MAX	6.000 V	60	TON DELAY	0.0 ms	8D	READ_TEMPERATURE_1	26 °C
24	VOUT MARGIN HIGH	1 262 V	61	TON BISE	6.0 ms	96	READ_POUT	0.000 W
20	VOUT_MARGIN_HOH	1.202 V	62		0.000 me	98	PMBUS_REVISION	0x22
20	VOULT TRANSITION DATE	1.141 V	62	TON MAX FAULT RESPONSE	lapore	99	MFR_ID	IR
21	VOUT_TRANSITION_RATE	U. 125 mV/Us	0.5		0.0 mm	9A	MFR_MODEL	0x30
29	VOUT_SCALE_LOOP	1.000	04	TOFF_DELAT	U.U ms	9B	MFR REVISION	0x04
33	FREQUENCY_SWITCH	600 KHz	65	TOFF_FALL	6.0 ms	AD	IC DEVICE ID	0x30
35	VIN_ON	1.000 V	/8	STATUS_BYTE	(JxOU	AE	IC DEVICE REV	0x04
36	VIN_OFF	0.500 V	79	STATUS_WORD	0×0000	DG	MER 12C ADDRESS	0x10
39	IOUT_CAL_OFFSET	0.000 A	7A	STATUS_VOUT	0x00	0.0	MER TRODIN	0 me
40	VOUT_OV_FAULT_LIMIT	1.500 V	7B	STATUS_IOUT	0x00	DQ	MER ECCM	Formed Cont. Conduction M
41	VOUT_OV_FAULT_RESPONSE	Shutdown	7C	STATUS_INPUT	0x00	DD		1 101 V
42	VOUT OV WARN LIMIT	1.379 V	7D	STATUS_TEMPERATURE	0x00	DB	MFR_VOUT_PEAK	1.191 v
43	VOUT UV WARN LIMIT	1.020 V	7E	STATUS CML	0x00	DC	MFR_IOUT_PEAK	U.U A
44	VOUT UV FAULT LIMIT	0.961 V	88	READ VIN	11,969 V	00	MFR_TEMP_PEAK	26 °C

Fig. 17: PMBus Command Summary

Quick Start: PowIRCenter GUI

Connecting devices

Quick Start: PowIRCenter GUI

Navigation: Accessing Different Views

Quick Start: PowIRCenter GUI PMBus Commands

