

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

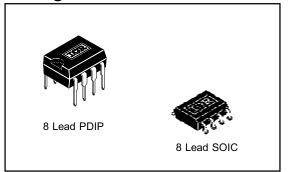
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

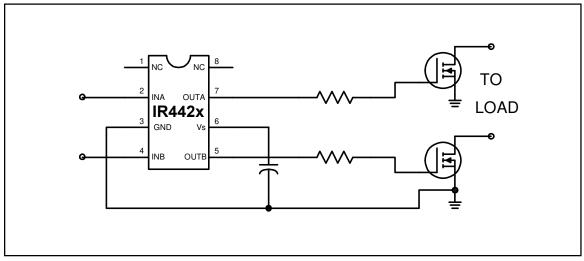
DUAL LOW SIDE DRIVER

Features

- Gate drive supply range from 6 to 20V
- CMOS Schmitt-triggered inputs
- Matched propagation delay for both channels
- Outputs out of phase with inputs (IR4426)
- Outputs in phase with inputs (IR4427)
- OutputA out of phase with inputA and OutputB in phase with inputB (IR4428)
- Also available LEAD-FREE


Descriptions

The IR4426/IR4427/IR4428 (S) is a low voltage, high speed power MOSFET and IGBT driver. Proprietary latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays between two channels are matched.


Product Summary

I _O +/-	1.5A / 1.5A
Vout	6V - 20V
t _{on/off} (typ.)	85 & 65 ns

Packages

Typical Connection

<u>www.irf.com</u>

ADVANCE INFORMATION

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units		
Vs	Fixed supply voltage	-0.3	25			
Vo	Output voltage		-0.3	V _S + 0.3	V	
V _{IN}	Logic input voltage		-0.3	V _S + 0.3		
PD	Package power dissipation @ T _A ≤ +25°C (8 Lead PDIP)		_	1.0	14/	
	_	(8 lead SOIC)	_	0.625	W	
RthJA	JA Thermal resistance, junction to ambient (8 lead PDIP)		_	125	- °C/W	
	_	(8 lead SOIC)	_	200	- 0/٧٧	
TJ	Junction temperature		_	150		
T _S	Storage temperature		-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to GND.

Symbol	Definition	Min.	Max.	Units
Vs	Fixed supply voltage	6	20	
Vo	Output voltage	0	V _S	V
V _{IN}	Logic input voltage	0	VS	
T _A	Ambient temperature	-40	125	°C

DC Electrical Characteristics

 V_{BIAS} (V_{S}) = 15V, T_{A} = 25°C unless otherwise specified. The V_{IN} , and I_{IN} parameters are referenced to GND and are applicable to input leads: INA and INB. The V_{O} and I_{O} parameters are referenced to GND and are applicable to the output leads: OUTA and OUTB.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "0" input voltage (OUTA=LO, OUTB=LO)	2.7	_	_		
	(IR4426)					
	Logic "1" input voltage (OUTA=HI, OUTB=HI)				V	
	(IR4427)					
	Logic "0" input voltage (OUTA=LO), Logic "1"					
	input voltage (OUTB=HI) (IR4428)					

ADVANCE INFORMATION

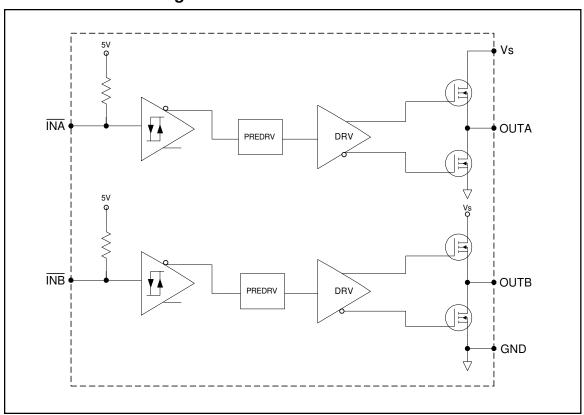
DC Electrical Characteristics cont.

 V_{BIAS} (V_S) = 15V, T_A = 25°C unless otherwise specified. The V_{IN} , and I_{IN} parameters are referenced to GND and are applicable to input leads: INA and INB. The V_O and I_O parameters are referenced to GND and are applicable to the output leads: OUTA and OUTB.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IL}	Logic "1" input voltage (OUTA=HI, OUTB=HI)	_	_	0.8		
	(IR4426)					
	Logic "0" input voltage (OUTA=LO, OUTB=LO)					
	(IR4427)				V	
	Logic "I" input voltage (OUTA=HI), Logic "0"				\ \	
	input voltage (OUTB=LO) (IR4428)					
VoH	High level output voltage, VBIAS-VO	_	_	1.2		lo = 0mA
V _{OL}	Low level output voltage, VO	_	_	0.1		Io = 0mA
I _{IN+}	Logic "1" input bias current (OUT=HI)	_	5	15		V _{IN} = 0V (IR4426)
						V _{IN} = V _S (IR4427)
						V _{INA} = 0V (IR4428)
						$V_{INB} = V_{S} (IR4428)$
I _{IN} -	Logic "0" input bias current (OUT=LO)	_	-10	-30	μΑ	V _{IN} = V _S (IR4426)
						V _{IN} = 0V (IR4427)
						$V_{INA} = V_S (IR4428)$
						V _{INB} = 0V (IR4428)
IQS	Quiescent Vs supply current	_	100	200		V _{IN} = 0V or V _S
I _{O+}	Output high short circuit pulsed current	1.5	2.3	—		$V_0 = 0V, V_{1N} = 0$
						(IR4426)
						$V_O = 0V$, $V_{IN} = V_S$
						(IR4427)
						$V_O = 0V$, $V_{INA} = 0$
						(IR4428)
						$V_O = 0V$, $V_{INB} = V_S$
					A	(IR4428)
					<u> </u>	PW ≤ 10 μs
I _O .	Output low short circuit pulsed current	1.5	3.3	_		$V_{O} = 15V, V_{IN} = V_{S}$
						(IR4426)
						$V_0 = 15V, V_{IN} = 0$
						(IR4427)
						$V_O = 15V, V_{INA} = V_S$
						(IR4428)
						$V_O = 15V, V_{INB} = 0$
						(IR4428)
						PW ≤ 10 μs

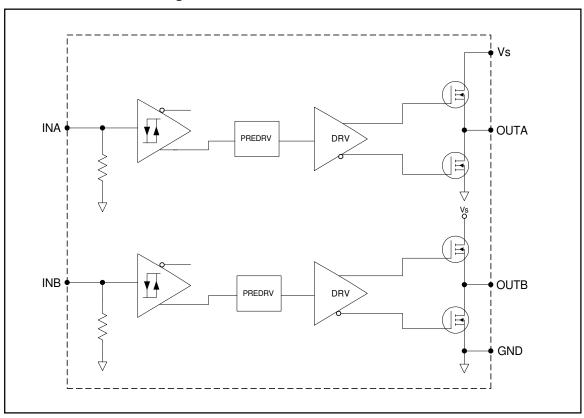
International

TOR Rectifier


ADVANCE INFORMATION

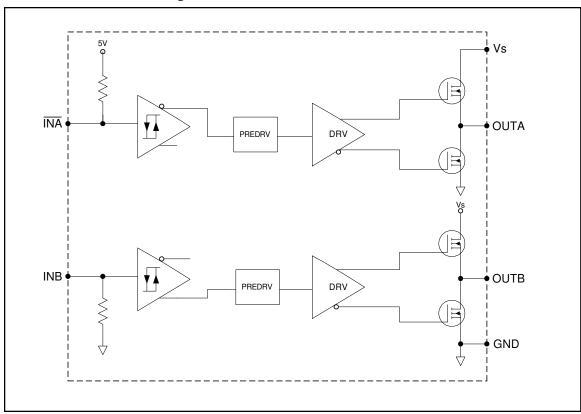
AC Electrical Characteristics

 V_{BIAS} (V_S) = 15V, CL = 1000pF, T_A = 25°C unless otherwise specified.


Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
Propagation delay characteristics						
^t d1	Turn-on propagation delay	_	85	160		
t _{d2}	Turn-off propagation delay	_	65	150	ns	figure 4
t _r	Turn-on rise time	_	15	35		ga.o .
tf	Turn-off fall time	_	10	25		

Functional Block Diagram IR4426

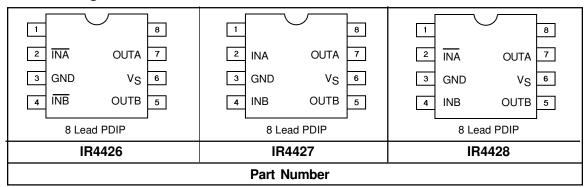
ADVANCE INFORMATION


Functional Block Diagram IR4427

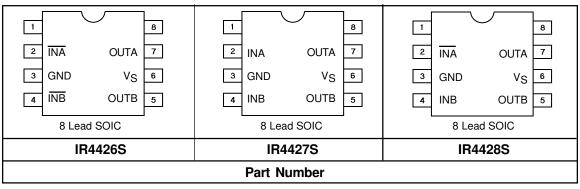
International TOR Rectifier

ADVANCE INFORMATION

Functional Block Diagram IR4428



Lead Definitions


Symbol	Description
Vs	Supply voltage
GND	Ground
INA	Logic input for gate driver output (OUTA), out of phase (IR4426, IR4428), in phase (IR4427)
INB	Logic input for gate driver output (OUTB), out of phase (IR4426), in phase (IR4427, IR4428)
OUTA	Gate drive output A
OUTB	Gate drive output B

ADVANCE INFORMATION

Lead Assignments

Lead Assignments

ADVANCE INFORMATION

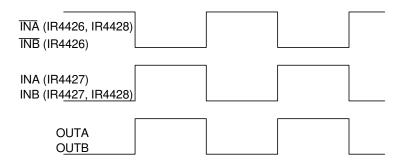
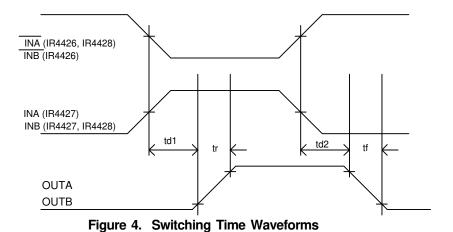



Figure 3. Timing Diagram

8 www.irf.com

ADVANCE INFORMATION

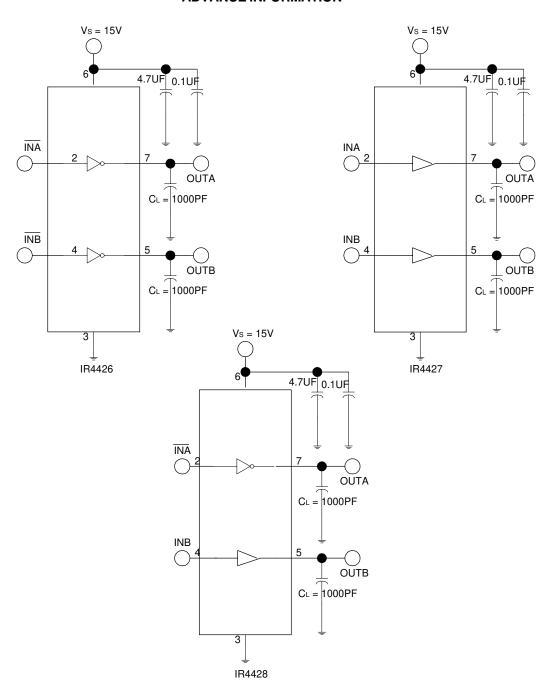
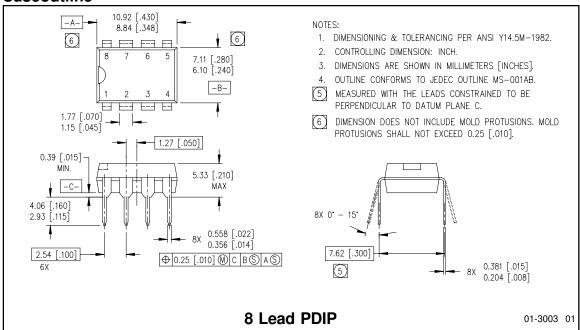
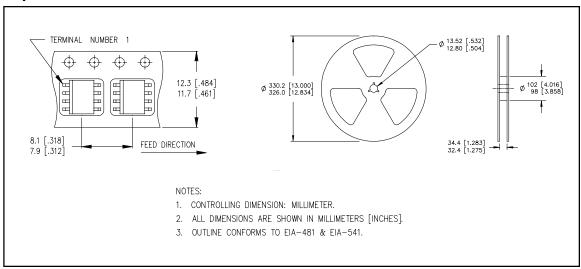
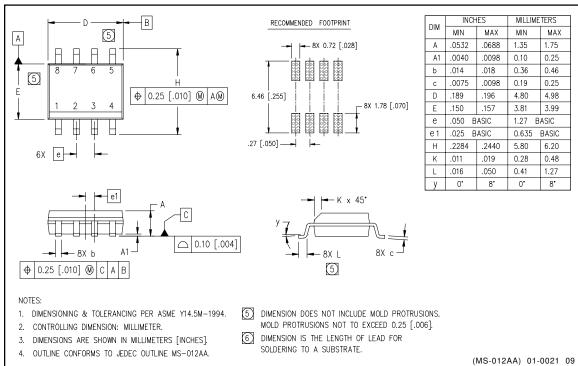



Figure 5. Switching Time Test Circuits


International TOR Rectifier

ADVANCE INFORMATION

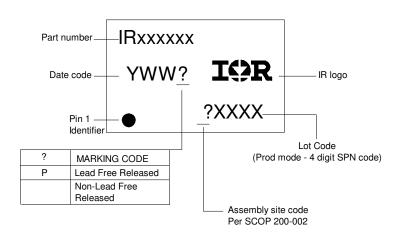
Caseoutline



Tape & Reel

ADVANCE INFORMATION

Case Outline - 8 Lead SOIC



International

TOR Rectifier

ADVANCE INFORMATION

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead F	⁻ ree)	Leadfree Part	
8-Lead PDIP IR4426	order IR4426	8-Lead PDIP IR4426	order IR4426PbF
8-Lead SOIC IR4426S	order IR4426S	8-Lead SOIC IR4426S	order IR4426SPbF
8-Lead PDIP IR4427	order IR4427	8-Lead PDIP IR4427	order IR4427PbF
8-Lead SOIC IR4427S	order IR4427S	8-Lead SOIC IR4427S	order IR4427SPbF
8-Lead PDIP IR4428	order IR4428	8-Lead PDIP IR4428	order IR4428PbF
8-Lead SOIC IR4428S	order IR4428S	8-Lead SOIC IR4428S	order IR4428SPbF

International

IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 3/3/2008

12 <u>www.irf.com</u>