: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

International INR Rectifier

Integrated Power Hybrid IC for Appliance Motor Drive Applications

Description

International Rectifier's IRAM109-015SD is a multi-chip Hybrid IC developed for low power appliance motor control applications such as Fans, Pumps, refrigerator compressors, etc. The compact Single in line (SIP-S) package minimizes PCB space.
Several built-in protection features such as temperature feedback, shoot through prevention, under voltage lockout, and shutdown input makes this a very robust solution. The internal shunt resistor saves board space and provides clean current feedback. The combination of highly efficient high voltage MOSFETs, the industry benchmark Half-Bridge HVIC driver ($3.3 \mathrm{~V} / 5 \mathrm{~V}$ input compatible) and thermally enhanced package makes this a highly competitive solution.
The bootstrapped power supplies for the high side drivers can be generated using internal bootstrap diodes eliminating the need for isolated power supplies. This feature reduces the component count, board space, and cost of the system.

Features

- Motor Power range 60~250W / 85~253 Vac.
- Integrated Gate Drivers and Bootstrap Diodes.
- Shut-Down input turns off both channels.
- Under-voltage lockout for all switches.
- Matched propagation delay.
- Schmitt-triggered input logic.
- Cross-conduction prevention logic.
- Low di/dt switching for better noise immunity.

- Internal Current Shunt.
- Internal thermistor for temperature feedback.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM.

$\mathrm{V}_{\mathrm{DSs}}$	MOSFET Blocking Voltage	500	V
Vbus	Positive DC Bus Input Voltage	400	
$\mathrm{I}_{\mathrm{o}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	RMS Phase Current	2.0	A
$\mathrm{I}_{\mathrm{o}} @ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	RMS Phase Current (Note 1)	1.0	
$\mathrm{I}_{\mathrm{pk}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Maximum Peak Phase Current $(\mathrm{tp}<100 \mu \mathrm{~s})$	5.0	
P_{d}	Maximum Power dissipation per FET @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	18	W
$\mathrm{~T}_{\mathrm{J}}$ (MOSFET \& IC)	Maximum Operating Junction Temperature	+150	
$\mathrm{~T}_{\mathrm{C}}$	Operating Case Temperature Range	-20 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-40 to +125	
T	Mounting torque Range (M3 screw)	0.6	Nm

Note 1: Sinusoidal Modulation at $\mathrm{V}^{+}=360 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{PWM}}=20 \mathrm{kHz}, \mathrm{F}_{\mathrm{MOD}}=50 \mathrm{~Hz}, \mathrm{MI}=0.8, \mathrm{PF}=0.6$, See Figure 5.

Internal Electrical Schematic - IRAM109-015SD

Absolute Maximum Ratings (Continued)

Symbol	Parameter	Min	Max	Units	Conditions
BV_{R}	Bootstrap Diode Reverse Breakdown Voltage	600	---	V	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
P_{BR} Peak	Bootstrap Resistor Peak Power (Single Pulse)	---	25.0	W	$\mathrm{t}_{\mathrm{P}}=100 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{S} 1,2,3}$	High side floating supply offset voltage	$\mathrm{V}_{\mathrm{B} 1,2,3}-20$	$\mathrm{~V}_{\mathrm{B} 1,2,3}+0.3$	V	
$\mathrm{~V}_{\mathrm{B} 1,2,3}$	High side floating supply voltage	-0.3	500	V	
$\mathrm{~V}_{\mathrm{DD}}$	Low Side and logic fixed supply voltage	-0.3	20	V	
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage IN1, IN2	-0.3	Lower of $\left(\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}\right)$ or $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V	

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{(B R) D S S}$	Drain-to-Source Breakdown Voltage	500	---	---	V	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Drain-to-Source On Resistance	---	2.2	2.7	Ω	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$
		---	5.5	---		$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{DSS}}$	Drain-to-Source Leakage Current	---	10	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}^{+}=500 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{FM}}$	Diode Forward Voltage Drop	---	0.87	1.1	V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$
	---	0.70	---	I		
$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$						
$\mathrm{V}_{\mathrm{BDFM}}$	Bootstrap Diode Forward Voltage Drop	---	---	1.25	V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$
R_{BR}	Bootstrap Resistor Value	---	22	---	Ω	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
$\Delta \mathrm{R}_{\mathrm{BR}} / \mathrm{R}_{\mathrm{BR}}$	Bootstrap Resistor Tolerance	---	---	± 5	$\%$	$\mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to COM. The V_{S} offset is tested with all supplies biased at 15 V differential.

Symbol	Definition	Min	Typ	Max	Units
V^{+}	Positive Bus Input Voltage	---	---	360	V
$\mathrm{~V}_{B 1,2,3}$	High side floating supply voltage	$\mathrm{V}_{\mathrm{S}}+10$	$\mathrm{~V}_{\mathrm{S}}+15$	$\mathrm{~V}_{\mathrm{S}}+20$	
$\mathrm{~V}_{\mathrm{DD}}$	Low side and logic fixed supply voltage	10	15	20	V
$\mathrm{~V}_{\mathrm{IN}}$	Logic input voltage (IN \& SD) - Note 2	V_{SS}	---	V_{DD}	V
F_{p}	PWM Carrier Frequency	---	20	---	KHz

Note 2: Logic operational for V_{s} from COM-5V to COM+500V. Logic state held for V_{s} from COM-5V to COM $-\mathrm{V}_{\mathrm{BS}}$. (please refer to DT97-3 for more details).

Static Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

$\mathrm{V}_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {BSI } 1,2,3}\right)=15 \mathrm{~V}$, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM and are applicable to all channels (Static Electrical Characteristics are Based on Driver IC Data Sheet).

Symbol	Definition	Min	Typ	Max	Units
$\mathrm{V}_{\text {DDUV }+,} \mathrm{V}_{\text {BSUV+ }}$	V_{DD} and V_{BS} supply undervoltage, Positive going threshold	8	8.9	9.8	V
$\mathrm{~V}_{\mathrm{DDUV}-}, \mathrm{V}_{\mathrm{BSUV}-}$	V_{DD} and V_{BS} supply undervoltage, Negative going threshold	7.4	8.2	9	V
$\mathrm{I}_{\mathrm{QBS}}$	Quiescent V_{BS} supply current	20	75	130	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{QDD}}$	Quiescent V_{DD} supply current	0.4	1	1.6	mA
I_{LK}	Offset Supply Leakage Current	---	---	50	$\mu \mathrm{~A}$

Dynamic Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{T}_{\text {ON }}$	Input to Output propagation turn- on delay time (see fig. 13a)	---	2.4	--	$\mu \mathrm{s}$	
$\mathrm{T}_{\text {OFF }}$	Input to Output propagation turn- off delay time (see fig. 13b)	---	570	---	ns	$\mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}, \mathrm{~V}^{+}=360 \mathrm{~V}$

Internal Current Sensing Resistor - Shunt Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{R}_{\text {Shunt }}$	Resistance	218	220	222	$\mathrm{~m} \Omega$	$\mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Coeff }}$	Temperature Coefficient	0	---	200	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {Range }}$	Temperature Range	0	---	125	${ }^{\circ} \mathrm{C}$	

Thermal and Mechanical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{R}_{\mathrm{th}(\mathrm{J}-\mathrm{C})}$	Thermal resistance, per FET	---	5.1	6.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Flat, Insulation Material

Internal NTC - Thermistor Characteristics

Parameter	Definition	Min	Typ	Max	Units	Conditions
R_{25}	Resistance	97	100	103	$\mathrm{k} \Omega$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$
R_{125}	Resistance	2.25	2.52	2.80	$\mathrm{k} \Omega$	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$
B	$\mathrm{B}-$ constant $\left(25-50^{\circ} \mathrm{C}\right)$	4165	4250	4335	k	$\mathrm{R}_{2}=\mathrm{R}_{1} \mathrm{e}^{[\mathrm{B}(1 / \mathrm{T} 2-1 / \mathrm{T} 1)]}$
Temperature Range	-40	---	125	${ }^{\circ} \mathrm{C}$		
Typ. Dissipation constant	---	1.0	---	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	

Input-Output Logic Level Table

$\overline{\mathrm{SD}}$	$\mathrm{IN1,2}$	$\mathrm{~V}_{\mathrm{S} 1,2}$
1	1	$\mathrm{~V}^{+}$
1	0	0
0	x	Off

Timing Parameter Definitions

Figure 1. Input/Output Timing Diagram

Figure 3. Deadtime Waveform Diagram

Figure 2. Switching Time Waveform Diagram

Figure 4. Delay Matching Waveform Diagram

Typical Application Connection - IRAM109-015SD

Application Circuit Recommendation

1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
2. In order to provide good decoupling between VCC-VSS and PO1,2-VB1,2 terminals, and the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically $0.1 \mu \mathrm{~F}$, are strongly recommended.
3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044, or Figure 12. Bootstrap capacitor value must be selected to limit the power dissipation of the internal resistor in series with V_{cc} (See maximum ratings Table on page 3).
4. The case of the module is connected to the negative DC Bus and is NOT Isolated. It is recommended to provide isolation material between case and heat sink to avoid electrical shock.

Module Pin-Out Description

Pin	Name	Description
1	IN1	Logic Input Gate Driver - Phase 1
2	IN2	Logic Input Gate Driver - Phase 2
3	$\mathrm{V}_{\text {TH }}$	Temperature Feedback
4	$\overline{\mathrm{SD}}$	Shun-down Function
5	$V_{\text {D }}$	+15V Main Supply
6	$\mathrm{V}_{\text {S }}$	Negative Main Supply
7	$\mathrm{I}_{\text {SENSE }}$	Current Feedback
8	V	Negative Bus Input Voltage
9	NA	none
10	NA	none
11	V_{52}	Output 2 - High Side Floating Supply Offset Voltage
12	$\mathrm{V}_{\mathrm{B} 2}$	High Side Floating Supply voltage 2
13	NA	none
14	NA	none
15	$\mathrm{V}_{\text {S1 }}$	Output 1 - High Side Floating Supply Offset Voltage
16	$\mathrm{V}_{\text {B1 }}$	High Side Floating Supply voltage 1
17	NA	none
18	NA	none
19	V^{+}	Positive Bus Input Voltage

19

Figure 5. Maximum Sinusoidal Phase Current vs. PWM Switching Frequency Sinusoidal Modulation, $\mathrm{V}^{+}=360 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MOD}}=50 \mathrm{~Hz}, \mathrm{MI}=0.8, \mathrm{PF}=0.6$

Figure 6. Maximum Sinusoidal Phase Current vs. Modulation Frequency Sinusoidal Modulation, $\mathrm{V}^{+}=360 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{MI}=0.8, \mathrm{PF}=0.6$

Figure 7. Total Power Losses vs. PWM Switching Frequency Sinusoidal Modulation, $\mathrm{V}^{+}=360 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{MI}=0.8, \mathrm{PF}=0.6$

Figure 8. Total Power Losses vs. Output Phase Current Sinusoidal Modulation, $\mathrm{V}^{+}=360 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{MI}=0.8, \mathrm{PF}=0.6$

IOR Rectifier

IRAM109-015SD

Figure 9. Maximum Allowable Case Temperature vs. Output RMS Current per Phase Sinusoidal Modulation, $\mathrm{V}^{+}=360 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$, Modulation Depth $=0.8, \mathrm{PF}=0.6$

Figure 10. Estimated Maximum MOSFET Junction Temperature vs. Thermistor Temperature

Figure 11. Thermistor Readout vs. Temperature (12Kohm pull-up resistor, 5V) and Normal Thermistor Resistance values vs. Temperature Table.

Figure 12. Recommended Bootstrap Capacitor Value vs. Switching Frequency

IRAM109-015SD

Figure 13. Switching Parameter Definitions

Figure 13a. Input to Output propagation turn-on delay time.

Figure 13b. Input to Output propagation turn-off delay time.

Figure 13c. Diode Reverse Recovery.

Figure CT1. Switching Loss Circuit

Package Outline IRAM109-015SD

For mounting instruction see AN-1049

International
 IOR Rectifier

Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information
7/2007
www.irf.com
15

