

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International Rectifier

IRAMS06UP60B **MOTION**[™] Series

with Internal Shunt Resistor

6A, 600V

Plug N Drive™ Integrated Power Module for Appliance Motor Drive

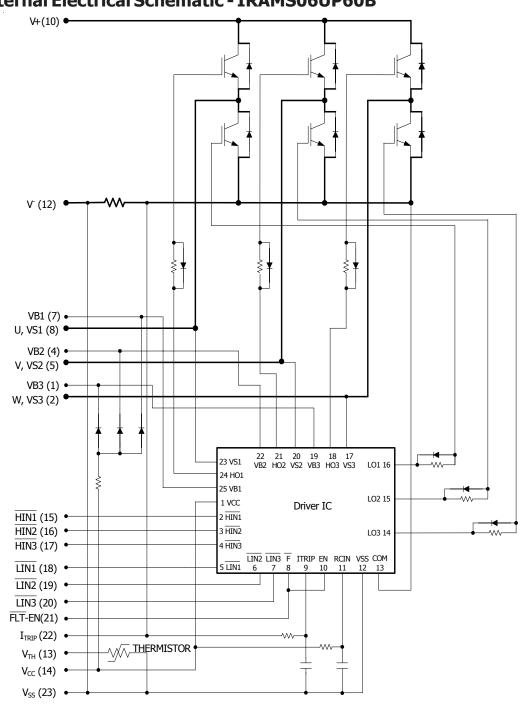
Description

International Rectifier's IRAMS06UP60B is an Integrated Power Module developed and optimized for electronic motor control in appliance applications specifically for VF compressor drives for refrigerators and freezer or in heating and ventilation as electronic fan controls. The IRAMS06UP60B offers an extremely compact, high performance AC motor-driver in a single isolated package for a very simple design.

An internal shunt is included and offers easy current feedback and overcurrent monitor for precise control and safe operation. A built-in temperature monitor and over-current protection, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. The integration of the bootstrap diodes for the high-side driver section, and the single polarity power supply required to drive the internal circuitry, simplify the utilization of the module and deliver further cost reduction advantages.

Features

- · Internal Shunt Resistor
- · Integrated Gate Drivers and Bootstrap Diodes
- · Temperature Monitor
- · Overcurrent shutdown
- Fully Isolated Package.
- Low V_{CE(on)} Non Punch Through IGBT Technology
- · Undervoltage lockout for all channels
- · Matched propagation delay for all channels
- · Schmitt-triggered input logic
- · Cross-conduction prevention logic
- Lower di/dt gate driver for better noise immunity
- Motor Power range 0.1~0.5kW / 85~253 Vac
- Isolation 2000V_{RMS}/1min



Parameter	Description	Max. Value	Units
V _{CES}	Maximum IGBT Blocking Voltage	600	V
V ⁺	Positive Bus Input Voltage	450	
I _o @ T _C = 25° C	RMS Phase Current	6	
I _o @ T _C = 100°C	RMS Phase Current	3	Α
I _{pk}	Max Peak Phase Current (tp<100ms) (see Note 1)	9	
Fp	Maximum PWM Carrier Frequency	20	kHz
P _d	Maximum Power dissipation per Phase	7.5	W
V _{iso}	Isolation Voltage (1min)	2000	V _{RMS}
T _{J (IGBT & Diodes)}	Operating Junction temperature Range		°C
T _{J (Driver IC)}	Operating Junction temperature Range	-40 to +150	-0
Т	Mounting torque Range (M3 screw)	0.8 to 1.0	Nm

Note 1: Limited by current protection, see table "Inverter Section Electrical Characteristics" on page 3

Internal Electrical Schematic - IRAMS06UP60B

IRAMS06UP60B

Inverter Section Electrical Characteristics @ $T_J = 25$ °C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600			V	V_{IN} =5V, I_C =250 μ A
$\Delta V_{(BR)CES}$ / ΔT	Temperature Coeff. Of Breakdown Voltage		0.3		V/°C	V _{IN} =5V, I _C =1.0mA (25°C - 150°C)
V	Collector-to-Emitter Saturation		1.9	2.4	V	$I_C=3A$, $V_{DD}=15V$
$V_{CE(ON)}$	Voltage		2.2	2.6	, v	I _C =3A, V _{DD} =15V, T _J =150°C
т	Zero Gate Voltage Collector-to-		15	45	μΑ	V _{IN} =5V, V ⁺ =600V
I_{CES}	Emitter Current		60	170		$V_{IN}=5V$, $V^{+}=600V$, $T_{J}=150$ °C
I_{lk_module}	Zero Gate Phase-to-Phase Current			50	μΑ	V _{IN} =5V, V ⁺ =600V
V	Diada Faruard Valtaga Dran		1.45	1.85	V	I _C =3A
V_{FM}	Diode Forward Voltage Drop		1.25	1.65	1 v	I _C =3A, T _J =150°C
I _{BUS_Trip}	Current Protection Threashold (positive going)	8.5		10.5	А	T_j =-40°C to 150°C (Overcurrent duration \geq 6 μ s)

Inverter Section Switching Characteristics @ $T_J = 25$ °C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
E _{on}	Turn-On Switching Loss		130	235		I _C =3A, V ⁺ =400V
E _{off}	Turn-Off Switching Loss		65	120	μЈ	V_{DD} =15V, L=1mH
E _{tot}	Total Switching Loss		195	355		See CT1 T _J =25°C
E _{on}	Turn-on Swtiching Loss		200	345		T _J =150°C
E _{off}	Turn-off Switching Loss		90	150	μЈ	Energy losses include "tail" and
E _{tot}	Total Switching Loss		290	495		diode reverse recovery
E _{rec}	Diode Rev. Recovery energy		50	110	μЈ	$T_J=150$ °C, $V^+=400V$ $V_{DD}=15V$,
t _{rr}	Diode Reverse Recovery time		150	200	ns	$I_F=3A$, $L=1mH$
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			T_J =150°C, I_C =3A, V_P =600V V ⁺ =480V, V_{DD} =+15V to 0V See CT3	
SCSOA	Short Circuit Safe Operating Area	10			μs	T _J =150°C, V _P =600V, V ⁺ =360V, V _{DD} =+15V to 0V See CT2

Thermal Resistance

Symbol	Parameter	Min	Тур	Max	Units	Conditions		
R _{th(J-C)}	Junction to case thermal resistance, each IGBT under inverter operation.			6.5	°C/W	Flat, greased surface.		
R _{th(J-C)}	Junction to case thermal resistance, each Diode under inverter operation.			9	°C/W	Heatsink compound thermal conductivity - 1W/mK		
R _{th(C-S)}	Case to sink thermal resistance		0.1		°C/W			

Absolute Maximum Ratings Driver Function

Absolute Maximum Ratings indicate substained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{SS} . (Note 2)

Symbol	Definition	Min	Max	Units
V _{S1,2,3}	High Side offset voltage	-0.3	600	V
V _{B1,2,3}	High Side floating supply voltage	-0.3	20	V
V_{DD}	Low Side and logic fixed supply voltage	-0.3	20	V
V_{IN}	Input voltage LIN, HIN, T/I _{TRIP}	-0.3	V _{SS} +15	V
T _J	Juction Temperature	-40	150	°C

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to V_{SS} . The V_{S} offset is tested with all supplies biased at 15V differential (Note 2). All input pin (V_{IN}) and I_{TRIP} are clamped with a 5.2V zener diode and pull-up resistor to V_{DD} .

Symbol	Definition	Min	Max	Units
V _{B1,2,3}	High side floating supply voltage	V _S +12	V _S +20	V
V _{S1,2,3}	High side floating supply offset voltage Note 3 450		, v	
V_{DD}	Low side and logic fixed supply voltage	12	20	V
V_{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{SS} +5	V

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{DD} , $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. (Note 2)

Symbol	Definition	Min	Тур	Max	Units
$V_{IN,th+}$	Positive going input threshold	3.0			V
$V_{\text{IN,th-}}$	Negative going input threshold			0.8	V
$V_{\text{CCUV+}}$ $V_{\text{BSUV+}}$	V_{CC} and V_{BS} supply undervoltage Positive going threshold 10.6 11.1 11		11.6	V	
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage Negative going threshold	10.4	10.9	11.4	V
V _{CCUVH} V _{BSUVH}	V_{CC} and V_{BS} supply undervoltage $I_{lockout}$ hysteresis		0.2		V
I_{QBS}	Quiescent V _{BS} supply current		70	120	μΑ
I_{QCC}	Quiscent V _{CC} supply current		1.6	2.3	mA
I _{LK}	Offset Supply Leakage Current			50	μΑ
I_{IN+}	Input bias current (OUT=LO) 100 220		μΑ		
I_{IN+}	Input bias current (OUT=HI) 200 300		μΑ		
V(I _{TRIP})	I _{TRIP} threshold Voltage (OUT=HI or OUT=LO)	0.44	0.49	0.54	V

Dynamic Electrical Characteristics

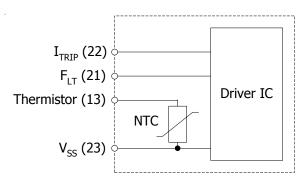
 $V_{DD} \! = \! V_{BS} \! = \! V_{BIAS} \! = \! 15V, PWM_{IN} \! = \! 2kHz, V_{IN_ON} \! = \! V_{IN_th-}, V_{IN_OFF} \! = \! V_{IN_th-}$

T_A=25°C, unless otherwise specified

Symbol	Definition	Min	Тур	Max	Units
T _{ON}	Input to output propagation turn-on delay time (see fig.11)	-	470	-	ns
T _{OFF}	Input to output propagation turn-off delay time (see fig. 11)	-	615	-	ns
D _T	Dead Time	-	290	-	ns
I/T _{Trip}	T/I_{Trip} to six switch to turn-off propagation delay (see fig. 2)	-	750	-	ns
T _{FCLTRL}	Post I _{Trip} to six switch to turn-off clear time (see fig. 2)	-	9	-	ms

Internal NTC - Thermistor Characteristics

Parameter		Тур	Units	Conditions
R ₂₅	Resistance	100 +/- 3%	kΩ	T _C = 25°C
R ₁₂₅	Resistance	2.522 ±10.9%	kΩ	T _C = 125°C
В	B-constant (25-50°C)	4250 +/- 2%	k	$R_2 = R_1 e^{[B(1/T2 - 1/T1)]}$
Temperature Range		-40 / 125	°C	
Typ. Dissipation constant		1	mW/°C	T _C = 25°C


Internal Current Sensing Resistor - Shunt Characteristics

Parameter		Units
Resistance	50 ±1%	mΩ
Tollerance	±1%	
Max Power Dissipation	1.5	W
Temperature Range	-40 / 125	°C

Note 2: For more details, see IR21363 data sheet

Note 3: Logic operational for V_s from V^- -5V to V^- +600V. Logic state held for V_s from V^- -5V to V^- -V_{BS}. (please refer to DT97-3 for more details)

Thermistor Built-in IRAMS06UP60B

Note 4: The Maximum recommended sense voltage at the I_{TRIP} terminal under normal operating conditions is 3.3V.

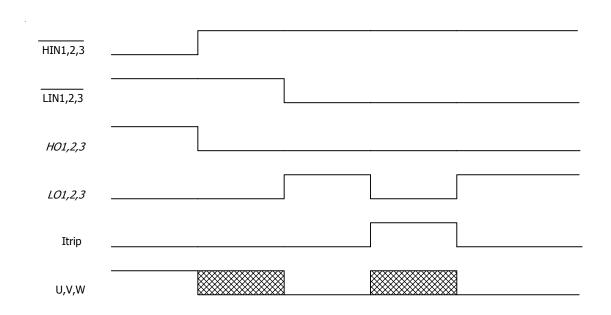
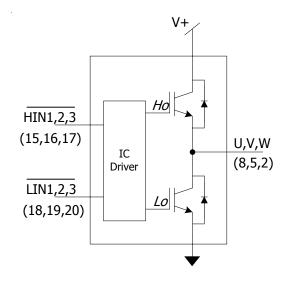
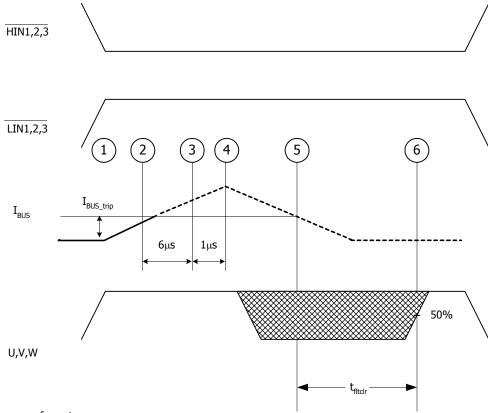




Figure 1. Input/Output Timing Diagram

Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.

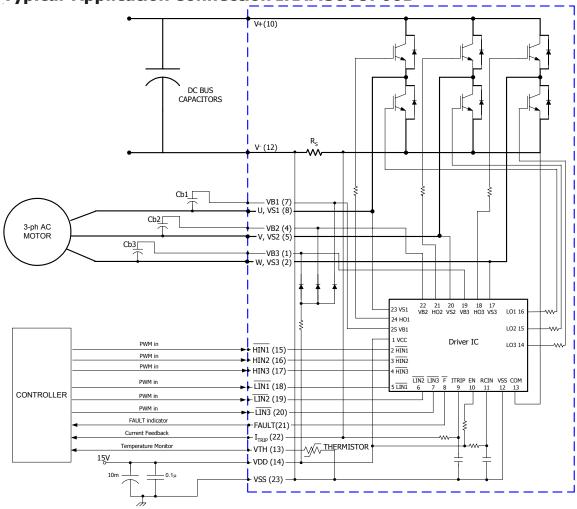
Itrip	HIN1,2,3	∐N1,2,3	U,V,W
0	0	1	V+
0	1	0	0
0	1	1	Χ
1	Х	Х	X

Sequence of events:

- 1-2) Current begins to rise
- 2) Current reaches I_{BUS_Trip} level
 2-3) Current is higher than I_{BUS_Trip} for at least 6µs. This value is the worst-case condition with very low over-current. In case of high current (short circuit), the actual delay will be smaller.
- 3-4) Delay between driver identification of over-current condition and disabling of all outputs
- 4) Current starts decreasing, eventually reaching 0
- 5) Current goes below I_{BUS_trip}, the driver starts its auto-reset sequence
 6) Driver is automatically reset and normal operation can resume (over-current condition must be removed
- by the time the drivers automatically resets itself)

Figure 2. I_{Trip} Timing Waveform

Note 6: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.


IRAMS06UP60B

Module Pin-Out Description

Pin	Name	Description
1	V _{B3}	High Side Floating Supply Voltage 3
2	W,V _{S3}	Output 3 - High Side Floating Supply Offset Voltage
3	NA	none
4	V _{B2}	High Side Floating Supply voltage 2
5	V,V _{S2}	Output 2 - High Side Floating Supply Offset Voltage
6	NA	none
7	V _{B1}	High Side Floating Supply voltage 1
8	U, V _{S1}	Output 1 - High Side Floating Supply Offset Voltage
9	NA	none
10	V ⁺	Positive Bus Input Voltage
11	NA	none
12	V ⁻	Negative Bus Input Voltage
13	V _{TH}	Temperature Feedback
14	V _{CC}	+15V Main Supply
15	H _{IN1}	Logic Input High Side Gate Driver - Phase 1
16	H _{IN2}	Logic Input High Side Gate Driver - Phase 2
17	H _{IN3}	Logic Input High Side Gate Driver - Phase 3
18	L _{IN1}	Logic Input Low Side Gate Driver - Phase 1
19	L _{IN2}	Logic Input Low Side Gate Driver - Phase 2
20	L _{IN3}	Logic Input Low Side Gate Driver - Phase 3
21	FLT/Enable	Fault Output and Enable Pin
22	I _{TRIP}	Current Sense and Itrip Pin
23	V _{SS}	Negative Main Supply

Typical Application Connection IRAMS06UP60B

- 1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. In order to provide good decoupling between V_{CC} -Gnd and V_{B} - V_{SS} terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically $0.1\mu F$, are strongly recommended.
- 3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9.
- 4. Current sense signal can be obtained from pin 22 and pin 23 $\,$
- 5. After approx. 9 ms the FAULT is reset
- 6.PWM generator must be disabled within Fault duration to garantee shutdown of the system, overcurrent condition must be cleared before resuming operation

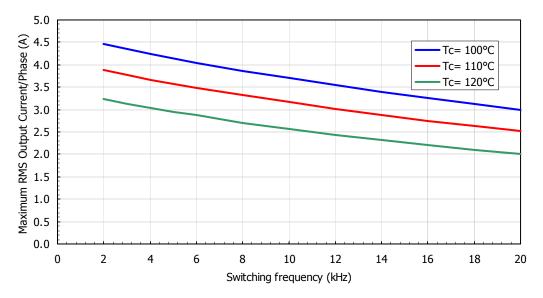


Figure 3. Maximum sinusoidal phase current as function of switching frequency V+ = 400V, T_i =150°C, Modulation Depth=0.8, PF=0.6

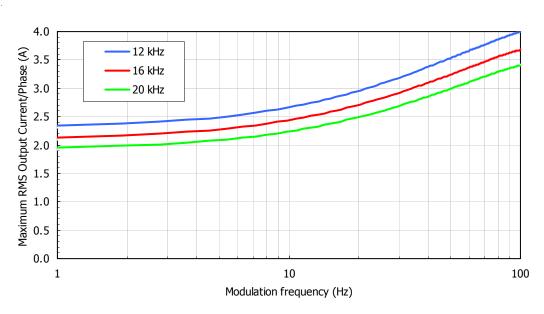


Figure 4. Maximum sinusoidal phase current as function of modulation frequency V+=400V, T_i =150°C, T_c =100°C, Modulation Depth=0.8, PF=0.6

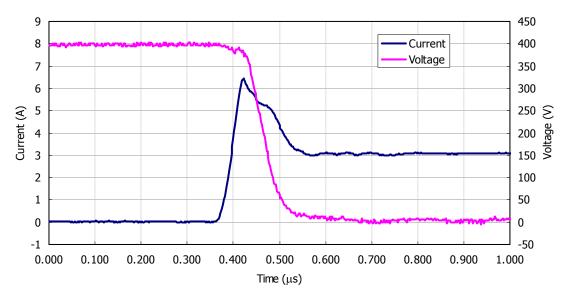


Figure 5. IGBT Turn-on. Typical turn-on waveform $@T_i=125$ °C, V+=400V

Figure 6. IGBT Turn-off. Typical turn-off waveform $@T_j=125^{\circ}C$, V+=400V

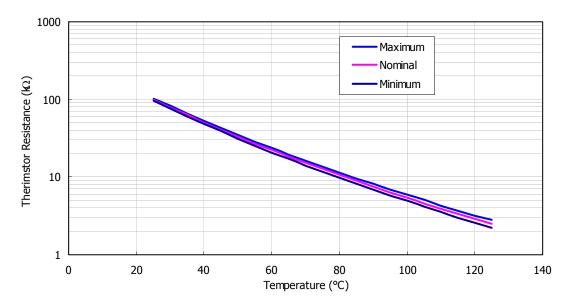


Figure 7. Variation of thermistor resistance with temperature

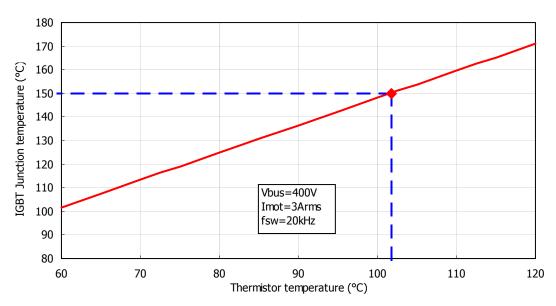


Figure 8. Estimated maximum IGBT junction temperature with thermistor temperature $\ensuremath{\mathsf{IGBT}}$

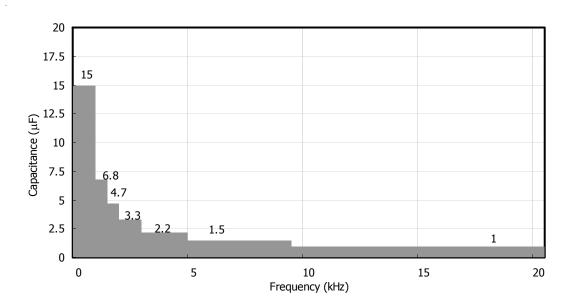


Figure 9. Recommended minimum Bootstrap Capacitor value Vs Switching Frequency

Figure 11. Switching Parameter Definitions

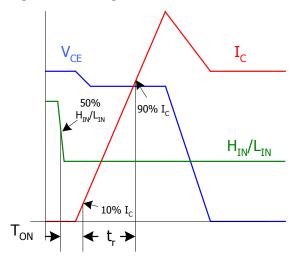


Figure 11a. Input to Output propagation turn-on delay time

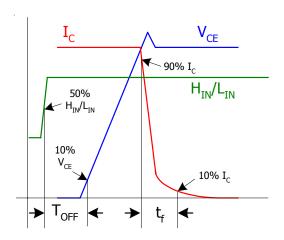


Figure 11b. Input to Output propagation turn-off delay time

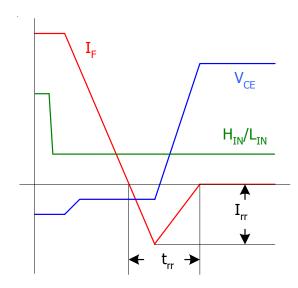
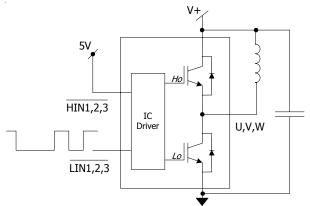
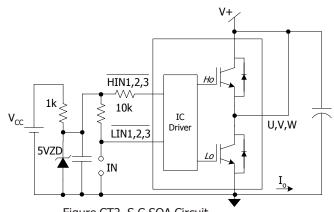
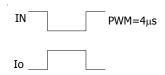
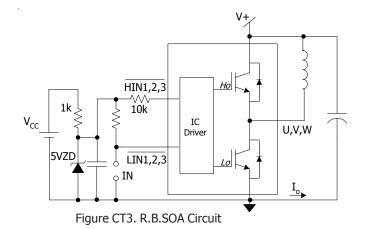
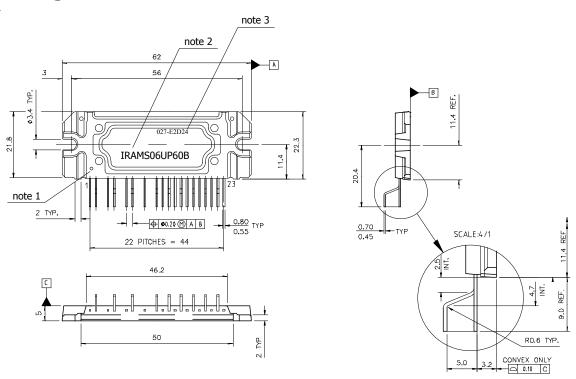


Figure 11c. Diode Reverse Recovery


Figure CT1. Switching Loss Circuit

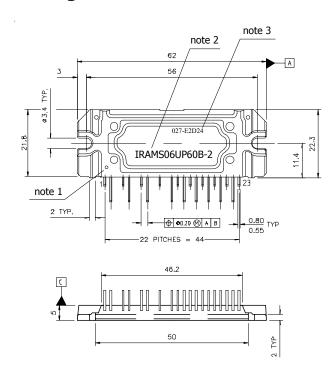

 V_P =Peak Voltage on the IGBT die

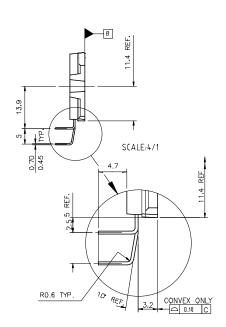
IN Io

 V_P =Peak Voltage on the IGBT die

Package Outline

Standard pin leadforming option


Notes:


Dimensions in mm

- 1- Marking for pin 1 identification
- 2- Product Part Number
- 3- Lot and Date code marking

For mounting instruction, see AN1049

Package Outline

Pin leadforming option -2

Notes:

Dimensions in mm

- 1- Marking for pin 1 identification
- 2- Product Part Number
- 3- Lot and Date code marking

Data and Specifications are subject to change without notice

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information 8/04