

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Sup*IR*Buck™

USER GUIDE FOR IRDC3863 EVALUATION BOARD

DESCRIPTION

The IR3863 SupIRBuck™ is an easy-to-use, fully integrated and highly efficient DC/DC voltage regulator. The onboard constant on time hysteretic controller and MOSFETs make IR3863 a space-efficient solution that delivers up to 6A of precisely controlled output voltage in a 4mm x 5mm QFN package.

In addition to excellent light load and full load efficiency, the IR3863 offers features such as: a 0.5V reference, programmable switching frequency, temperature compensated over current protection, thermal shutdown and optional forced continuous conduction mode.

Additional features include: pre-bias startup, soft start, power good output, enable input with voltage monitoring capability and over/under voltage protection, making the device a very flexible solution that is suitable for a broad range of applications.

This user guide contains the schematic, bill of materials, and operating instructions of the IRDC3863 evaluation board. Detailed product specifications, application information and performance curves at different operating conditions are available in the IR3863 data sheet.

BOARD FEATURES

- V_{IN} = +12V
- V_{CC} = +5V
- V_{OUT} = +1.05V
- I_{OUT} = 0 to 6A
- F_S = 300kHz @ CCM
- L = 2.2µH
- $C_{IN} = 22\mu F$ (ceramic 1210) + $68\mu F$ (electrolytic)
- $C_{OUT} = 47 \mu F \text{ (ceramic 0805)} + 150 \mu F \text{ (PC-CON)}$

CONNECTIONS and OPERATING INSTRUCTIONS

An input supply in the range of 7 to 16V should be connected from VIN to PGND. A maximum load of 6A may be connected to V_{OUT} and PGND. The connection diagram is shown in Fig. 1, and the inputs and outputs of the board are listed in Table 1.

IRDC3863 has two input supplies, one for biasing (VCC) and the other for input voltage (VIN). Separate supplies should be applied to these inputs. VCC input should be a well regulated 4.5V to 5.5V supply connected to VCC and PGND. Enable (EN) is controlled by the first switch of SW1, and FCCM option can be selected by the second switch of SW1. Toggle the switch to the ON position (marked by a solid square) to enable switching or to select FCCM. The absolute maximum voltage of the external signal applied to EN (TP4) and FCCM is +8V.

Connection Signal Name VIN (TP2) VIN PGND (TP5) Ground for VIN VCC (TP16) VCC Input PGND (TP17) Ground for VCC Input VOUT (TP7) V_{OUT} (+1.05V) PGND (TP10) Ground for V_{OUT} EN (TP4) **Enable Input**

Table 1. Connections

LAYOUT

The PCB is a 4-layer board. All layers are 1 oz. copper. IR3863 and other components are mounted on the top and bottom layers of the board.

The power supply decoupling capacitors, bootstrap capacitor and feedback components are located close to IR3863. To improve efficiency, the circuit board is designed to minimize the length of the onboard power ground current path.

CONNECTION DIAGRAM

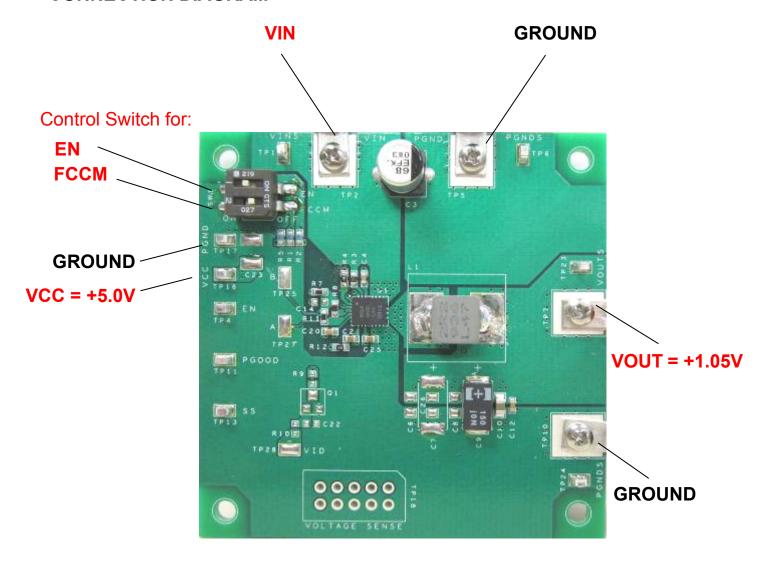


Fig. 1: Connection Diagram of IRDC3863 Evaluation Board

PCB Board Layout

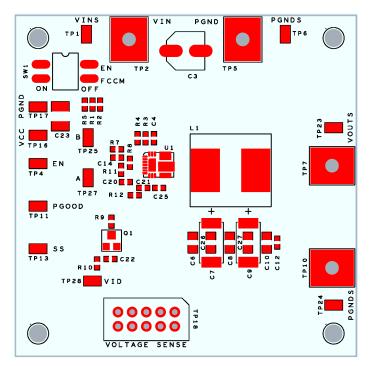


Fig. 2: Board Layout, Top Components

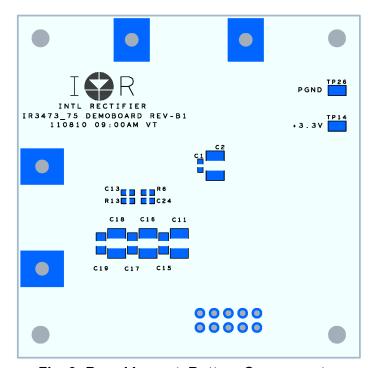


Fig. 3: Board Layout, Bottom Components

PCB Board Layout

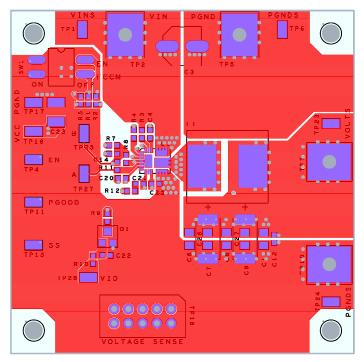


Fig. 4: Board Layout, Top Layer

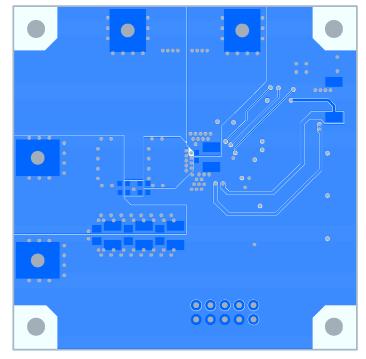


Fig. 5: Board Layout, Bottom Layer

PCB Board Layout

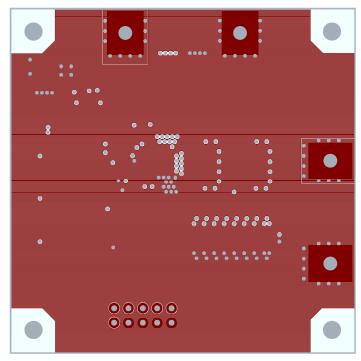


Fig. 6: Board Layout, Mid-layer I

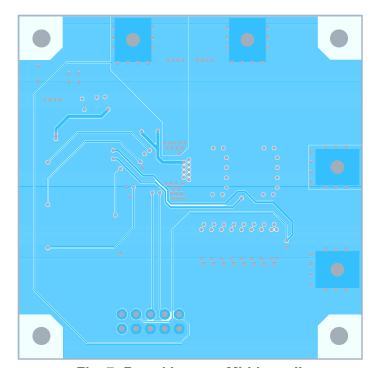


Fig. 7: Board Layout, Mid-layer II

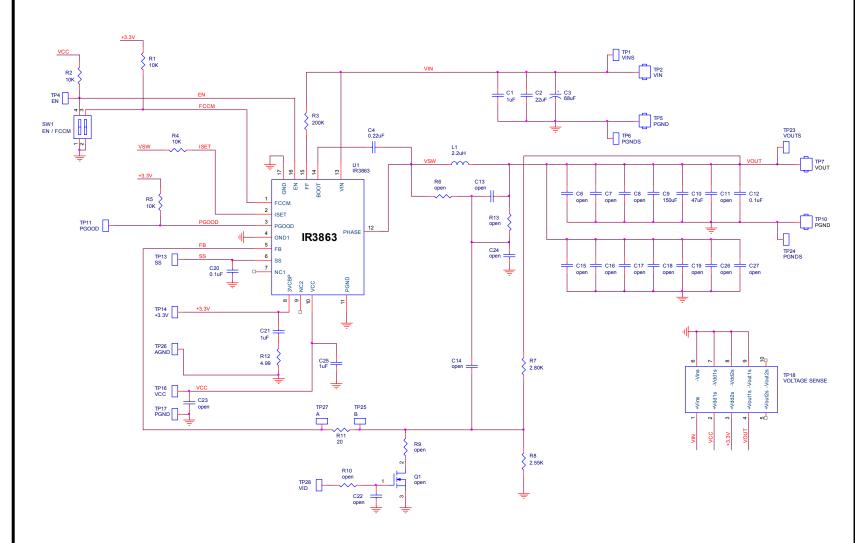


Fig. 8: Schematic of the IRDC3863 Evaluation Board

Bill of Materials

QTY	REF DESIGNATOR	VALUE	DESCRIPTION	MANUFACTURER	PART NUMBER
3	C1, C21, C25	1.00uF	capacitor, X7R, 1.00uF, 25V, 0.1, 0603	Murata	GRM188R71E105KA12D
1	C10	47uF	capacitor, 47uF, 6.3V, 805	TDK	C2012X5R0J476M
2	C12, C20	0.100uF	capacitor, X7R, 0.100uF, 25V, 0.1, 603	TDK	C1608X7R1E104K
1	C2	22.0uF	capacitor, X5R, 22.0uF, 16V, 20%, 1206	Taiyo Yuden	EMK316BJ226ML-T
1	C3	68uF	capacitor, electrolytic, 68uF, 25V, 0.2, SMD	Panasonic	EEV-FK1E680P
1	C4	0.22uF	capacitor, X5R, 0.22uF, 10V, 0.1, 0603	TDK	C1608X5R1A224K
1	C9	150uF	capacitor, tantalum polymer, 150uF, 6.3V, 20%, 7343	Sanyo	6TPC150M
1	L1	2.2uH	inductor, ferrite, 2.2uH, 8.0A, 11.2mOhm, SMT	Cyntec	PCMB065T-2R2MS
4	R1, R2, R4, R5	10.0K	resistor, thick film, 10.0K, 1/10W, 0.01, 0603	KOA	RK73H1J1002F
1	R11	20	resistor, thick film, 20, 1/10W, 0.01, 603	KOA	RK73H1JLTD20R0F
1	R12	4.99	resistor, thick film, 4.99, 1/8W, 0.01, 603	KOA	RK73H1J4R99F
1	R3	200K	resistor, thick film, 200K, 1/10W, 0.01, 603	KOA	RK73H1JLTD2003F
1	R7	2.80K	resistor, thick film, 2.80K, 1/10W, 0.01, 603	KOA	RK73H1JLTD2801F
1	R8	2.55K	resistor, thick film, 2.55K, 1/10W, 0.01, 0603	KOA	RK73H1J2551F
1	SW1	SPST	switch, DIP, SPST, 2 position, SMT	C&K Components	SD02H0SK
1	U1	IR3863	4mm X 5mm QFN	IRF	IR3863MTRPBF

TYPICAL OPERATING WAVEFORMS

Tested with demoboard shown in Fig. 8, VIN = 12V, VCC = 5V, VOUT = 1.05V, Fs = 300kHz, $T_A = 25^{\circ}C$, no airflow, unless otherwise specified

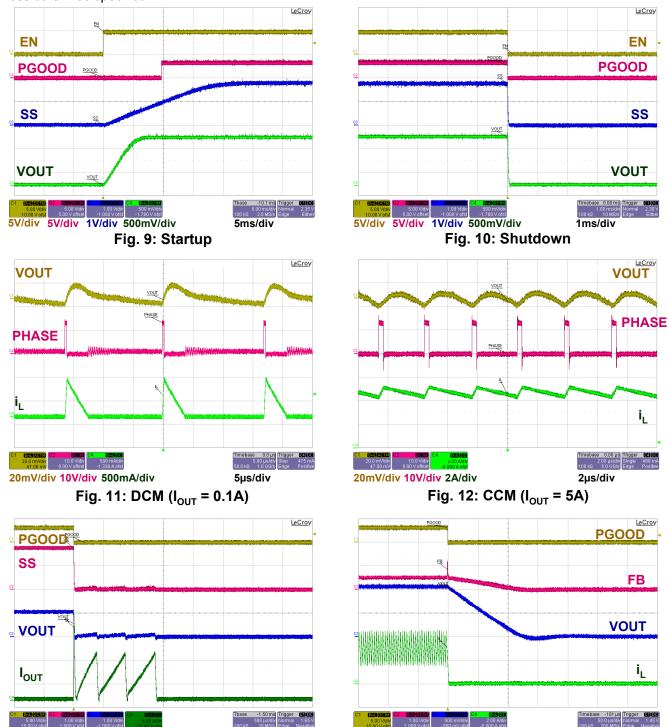


Fig. 13: Over Current Protection (tested by shorting VOUT to PGND)

500µs/div

5V/div 1V/div 1V/div 5A/div

Fig. 14: Over Voltage Protection (tested by shorting FB to VOUT)

5V/div 1V/div 500mV/div 2A/div

50µs/div

TYPICAL OPERATING WAVEFORMS

Tested with demoboard shown in Fig. 8, VIN = 12V, VCC = 5V, VOUT = 1.05V, Fs = 300kHz, $T_A = 25^{\circ}C$, no airflow, unless otherwise specified

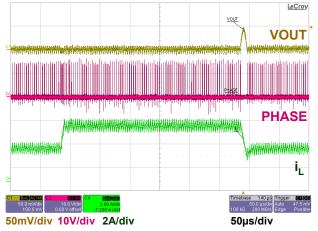


Fig. 15: Load Transient 0-2A

Fig. 16: Load Transient 3-5A

TYPICAL PERFORMANCE

VIN = 12V, VCC = 5V, VOUT = 1.05V, Fs = 300kHz, IOUT = 6A, $T_A = 25$ °C, no airflow

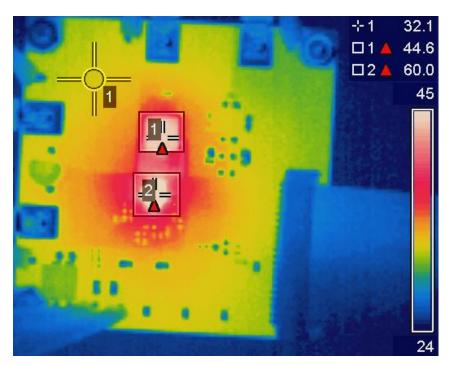


Fig. 17: Thermal Image (IR3863: 60°C, Inductor: 45°C, PCB: 32°C)

TYPICAL OPERATING DATA

VIN = 12V, VCC = 5V, VOUT = 1.05V, Fs = 300kHz, IOUT = 0 \sim 6A, T_A = 25°C, no airflow, unless otherwise specified

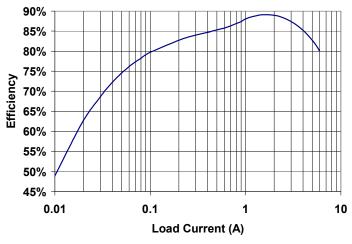


Fig. 18: Efficiency vs. Load Current

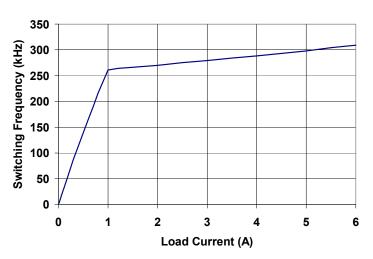


Fig. 19: Switching Frequency vs. Load Current

Fig. 20: Load Regulation

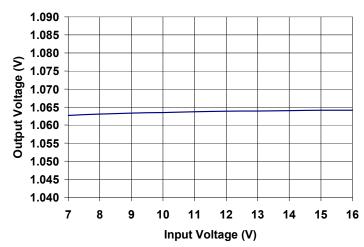
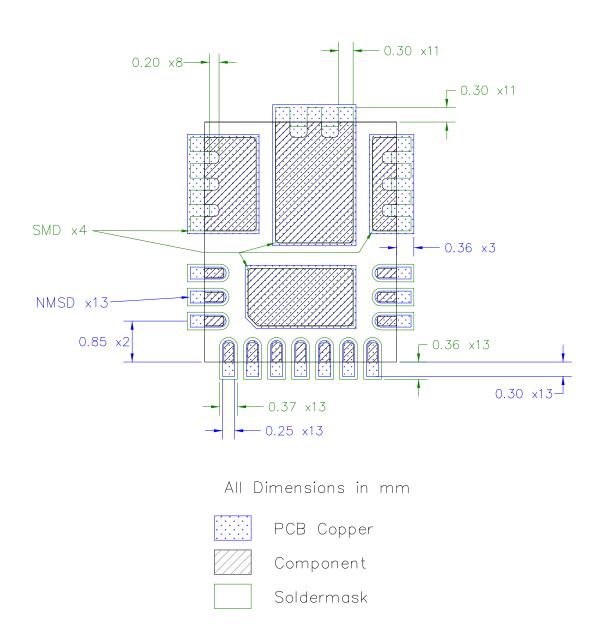


Fig. 21: Line Regulation at 6A Load

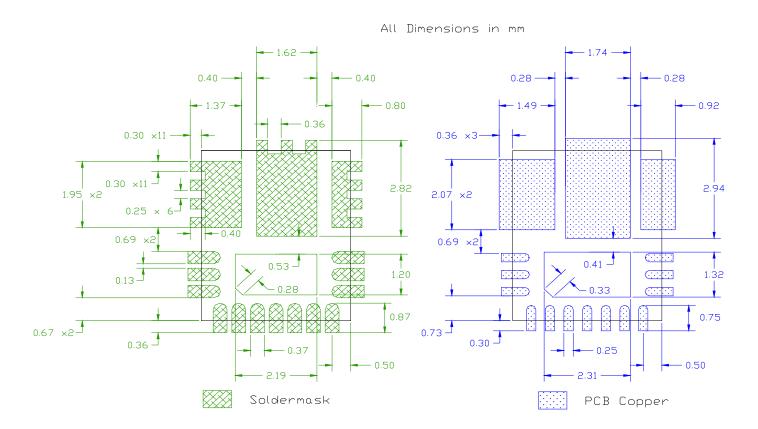


PCB Metal and Components Placement

Lead lands (the 13 IC pins) width should be equal to nominal part lead width. The minimum lead to lead spacing should be \geq 0.2mm to minimize shorting.

Lead land length should be equal to maximum part lead length + 0.3 mm outboard extension. The outboard extension ensures a large toe fillet that can be easily inspected.

Pad lands (the 4 big pads) length and width should be equal to maximum part pad length and width. However, the minimum metal to metal spacing should be no less than 0.17mm for 2 oz. Copper, or no less than 0.1mm for 1 oz. Copper, or no less than 0.23mm for 3 oz. Copper.

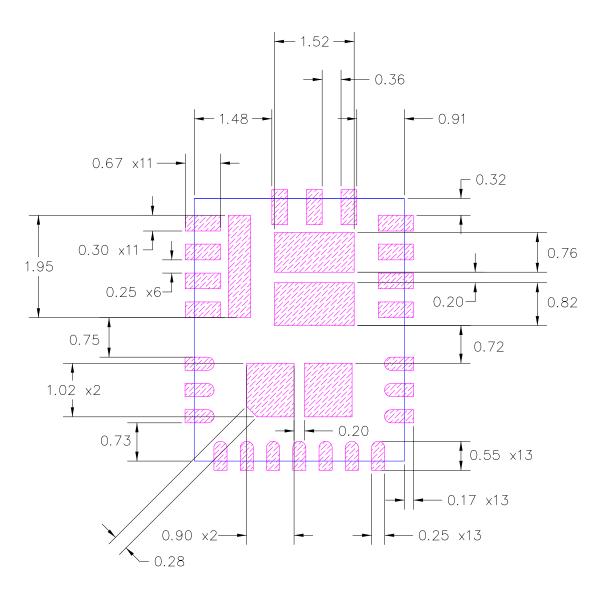


Solder Resist

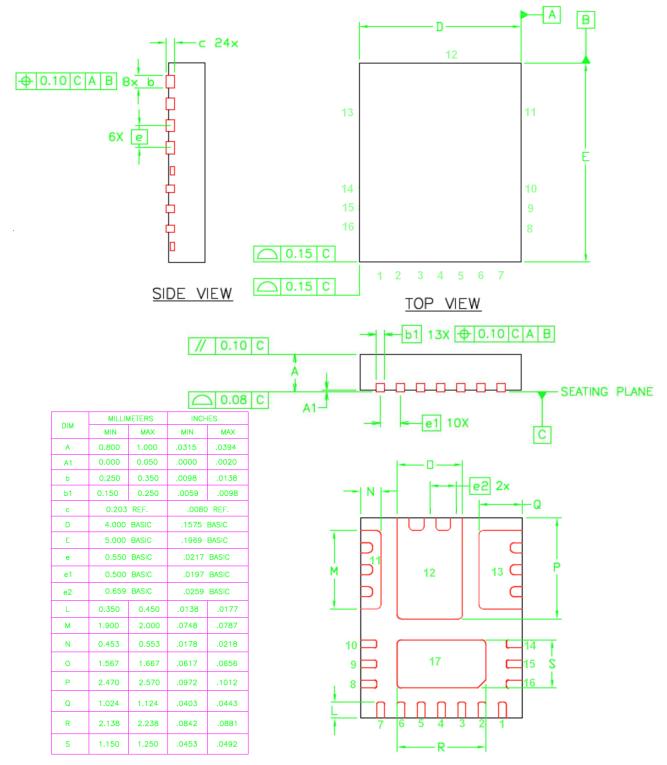
It is recommended that the lead lands are Non Solder Mask Defined (NSMD). The solder resist should be pulled away from the metal lead lands by a minimum of 0.025mm to ensure NSMD pads.

The land pad should be Solder Mask Defined (SMD), with a minimum overlap of the solder resist onto the copper of 0.05mm to accommodate solder resist misalignment.

Ensure that the solder resist in between the lead lands and the pad land is ≥ 0.15 mm due to the high aspect ratio of the solder resist strip separating the lead lands from the pad land.



Stencil Design


The Stencil apertures for the lead lands should be approximately 80% of the area of the lead lads. Reducing the amount of solder deposited will minimize the occurrences of lead shorts. If too much solder is deposited on the center pad, the part will float and the lead lands will open.

The maximum length and width of the land pad stencil aperture should be equal to the solder resist opening minus an annular 0.2mm pull back in order to decrease the risk of shorting the center land to the lead lands when the part is pushed into the solder paste.

Stencil Aperture
All Dimensions in mm

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information Data and specifications subject to change without notice. 06/2011