## mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





### Sup*IR*Buck™

### **USER GUIDE FOR IRDC3892 EVALUATION BOARD**

### DESCRIPTION

The IR3892 is a dual synchronous buck converter, providing a compact, high performance and flexible solution in a small 5mm X 6mm Power QFN package.

Key features offered by the IR3892 include internal Digital Soft Start, precision 0.5V reference voltage, Power Good, thermal protection, programmable switching frequency, Enable input, input under-voltage lockout for proper start-up, enhanced line/ load regulation with feed forward, external frequency synchronization with smooth clocking, internal LDO, pre-bias start-up, output over voltage protection as well as open feedback line protection.

Output over-current protection function is implemented by sensing the voltage developed across the on-resistance of the synchronous rectifier MOSFET for optimum cost and performance and the current limit is thermally compensated.

This user guide contains the schematic and bill of materials for the IRDC3892 evaluation board. The guide describes operation and use of the evaluation board itself. Detailed application information for IR3892 is available in the IR3892 data sheet.

### **BOARD FEATURES**

- V<sub>in</sub> = +12.0V
- Fs = 600kHz
- V<sub>out1</sub> = +1.8V @ 6A
- L<sub>1</sub> = 1.0uH
- C<sub>out1</sub>=4x22uF (ceramic 0805)
- C<sub>in</sub>= 4x10uF (ceramic 1206) + 1x330uF (electrolytic)

V<sub>out2</sub> = +1.2V @ 6A

 $L_2 = 1.0 \text{uH}$ 

C<sub>out2</sub>=4x22uF (ceramic 0805)

### **CONNECTIONS and OPERATING INSTRUCTIONS**

A well regulated +12.0V input supply should be connected to VIN+ and VIN-. A maximum 6A load should be connected to VOUT+ and VOUT-. The connection diagram is shown in Fig. 1 and inputs and outputs of the board are listed in Table I.

IR3892 has only one input supply and internal LDO generates Vcc from Vin. If operation with external Vcc is required, then R3 should be removed and external Vcc should be applied between Vcc+ and Vcc- pins. Vin pin (input of the LDO) and Vcc/LDO pins should be shorted together (populate R4) for external Vcc operation.

The output of channel2 ( $Vout_2$ ) can follow the voltage at the Seq pin. For this purpose, The value of R5 and R6 can be selected to provide the desired sequencing ratio between Seq input and  $Vout_2$ . For normal operation (non-sequencing) Seq pin should be left floating. Seq pin is internally pulled up to 3.3V.

| Connection | Signal Name                  |
|------------|------------------------------|
| VIN+       | PV <sub>in</sub> (+12V)      |
| VIN-       | Ground of PV <sub>in</sub>   |
| VOUT1+     | V <sub>out1</sub> (+1.8V)    |
| VOUT1-     | Ground of Vout <sub>1</sub>  |
| VOUT2+     | V <sub>out2</sub> (+1.2V)    |
| VOUT2-     | Ground of Vout <sub>2</sub>  |
| VCC+       | VCC/LDO pin                  |
| VCC-       | Connected to PGND            |
| VSEQ       | Sequence input               |
| EN1, EN2   | Enable input of each channel |
| Sync       | Synchronous input            |

### **Table I. Connections**

### LAYOUT

The PCB is a 4-layer board. All of layers are 2 Oz. copper. The IR3892 and other components are mounted on the top and bottom side of the board.

Power supply decoupling capacitors, the Bootstrap capacitor and feedback components are located close to IR3892. The feedback resistors are connected to the output voltage at the point of regulation and are located close to IR3892. To improve efficiency, the circuit board is designed to minimize the length of the on-board power ground current path.





### **Connection Diagram**

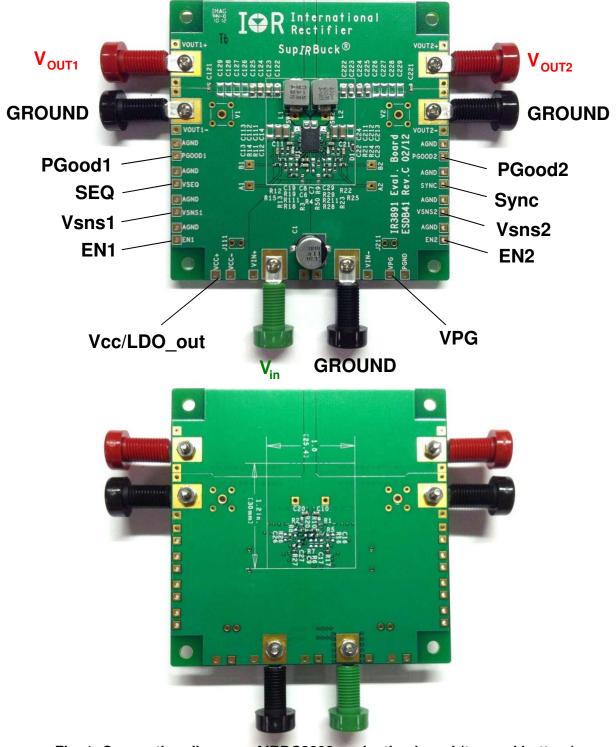



Fig. 1: Connection diagram of IRDC3892 evaluation board (top and bottom)

## International **IOR**Rectifier

### **IRDC3892**

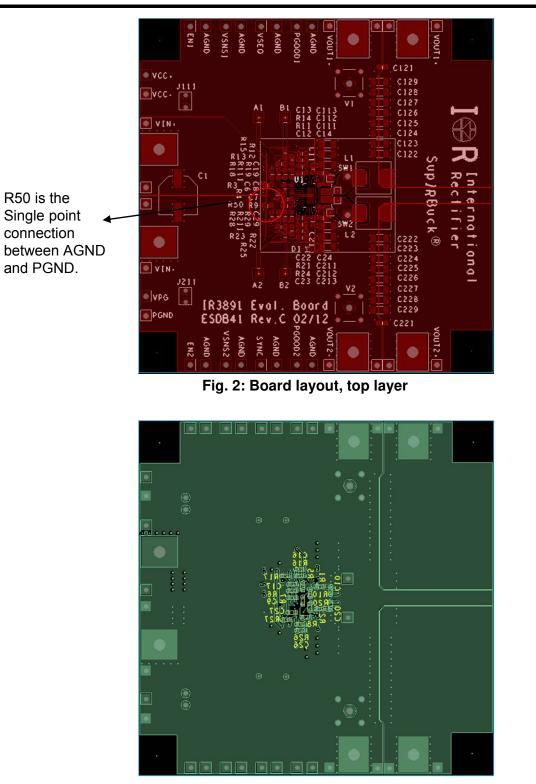



Fig. 3: Board layout, bottom layer

# International **IOR**Rectifier

### **IRDC3892**

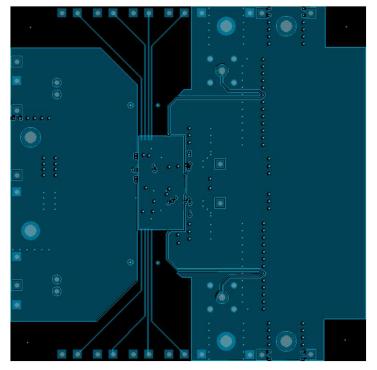



Fig. 4: Board layout, mid-layer I

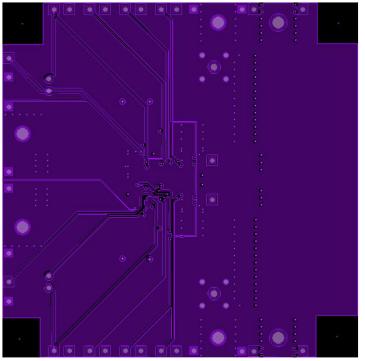



Fig. 5: Board layout, mid-layer II



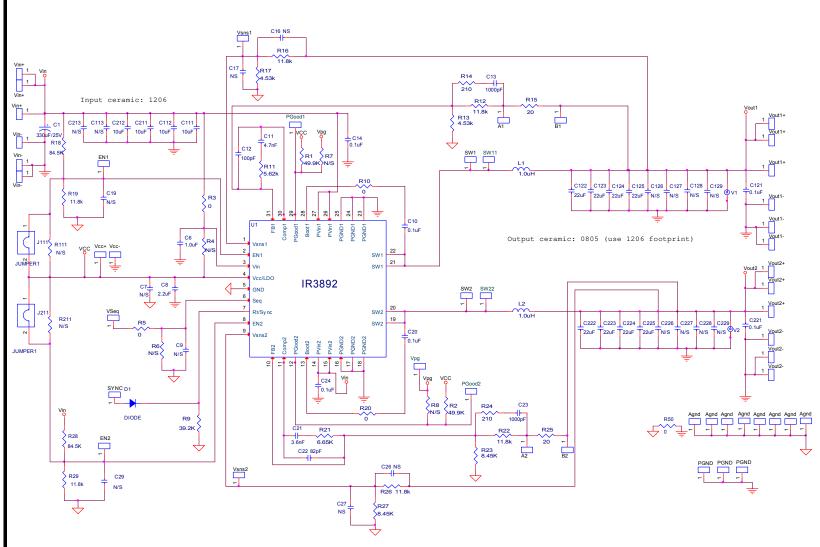



Fig.6: Schematic of the IRDC3892 evaluation board

**IRDC3892** 

International

6

### **Bill of Materials**

| Vin=12.0V, Vout1=1.8V/6A, Vout2=1.2V/6A, Fsw=600KHz |     |                                            |        |                                 |                            |                    |
|-----------------------------------------------------|-----|--------------------------------------------|--------|---------------------------------|----------------------------|--------------------|
| Item                                                | Qty | Part Reference                             | Value  | Description                     | Manufacturer               | Part Number        |
| 1                                                   | 1   | C1                                         | 330uF  | SMD Electrolytic F size 25V 20% | Panasonic                  | EEE-FK1E331P       |
| 2                                                   | 4   | C111 C112 C211 C212                        | 10uF   | 1206, 25V, X5R, 10%             | TDK                        | C3216X5R1E106K     |
| 3                                                   | 1   | C6                                         | 1.0uF  | 0603, 25V, X5R, 10%             | Murata                     | GRM188R61E105KA12D |
| 4                                                   | 1   | C8                                         | 2.2uF  | 0603, 16V, X5R, 20%             | TDK                        | C1608X5R1C225M     |
| 5                                                   | 6   | C10 C14 C20<br>C24 C121 C221               | 0.1uF  | 0603, 25V, X7R, 10%             | Murata                     | GRM188R71E104KA01D |
| 6                                                   | 1   | C11                                        | 4.7nF  | 0603, 50V, X7R, 10%             | Murata                     | GRM188R71H472KA01D |
| 7                                                   | 1   | C12                                        | 100pF  | 0603, 50V, NP0, 5%              | Murata                     | GRM1885C1H101JA01D |
| 8                                                   | 2   | C13 C23                                    | 1000pF | 0603, 50V, X7R, 10%             | Murata                     | GRM188R71H102KA01D |
| 9                                                   | 1   | C21                                        | 3.6nF  | 0603, 50V, NP0, 5%              | Murata                     | GRM1885C1H362JA01D |
| 10                                                  | 1   | C22                                        | 82pF   | 0603, 50V, NP0, 5%              | Murata                     | GRM1885C1H820JA01D |
| 11                                                  | 8   | C122 C123 C124 C125<br>C222 C223 C224 C225 | 22uF   | 0805, 6.3V, X5R, 20%            | TDK                        | C2012X5R0J226M     |
| 12                                                  | 1   | L1                                         | 1.0uH  | SMT 6.5x7x5mm, 4.7mΩ            | TDK                        | SPM6550T-1R0M100A  |
| 13                                                  | 1   | L2                                         | 1.0uH  | SMT 6.5x7x5mm, 4.7mΩ            | TDK                        | SPM6550T-1R0M100A  |
| 14                                                  | 2   | R1 R2                                      | 49.9K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF4992V      |
| 15                                                  | 5   | R3 R5 R10 R20 R50                          | 0      | Thick Film, 0603,1/10W          | Panasonic                  | ERJ-3GEY0R00V      |
| 16                                                  | 1   | R9                                         | 39.2K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF3922V      |
| 17                                                  | 1   | R11                                        | 5.62K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF5621V      |
| 18                                                  | 2   | R12 R16                                    | 11.8K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF1182V      |
| 19                                                  | 2   | R13 R17                                    | 4.53K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF4531V      |
| 20                                                  | 1   | R14                                        | 210    | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF2100V      |
| 21                                                  | 2   | R15 R25                                    | 20     | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF20R0V      |
| 22                                                  | 2   | R18 R28                                    | 84.5K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF8452V      |
| 23                                                  | 2   | R19 R29                                    | 11.8K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF1182V      |
| 24                                                  | 1   | R21                                        | 6.65K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF6651V      |
| 25                                                  | 2   | R22 R26                                    | 11.8K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF1182V      |
| 26                                                  | 2   | R23 R27                                    | 8.45K  | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF8451V      |
| 27                                                  | 1   | R24                                        | 210    | Thick Film, 0603,1/10W,1%       | Panasonic                  | ERJ-3EKF2100V      |
| 28                                                  | 2   | J111 J211                                  | jumper | This is a simple jumper         |                            |                    |
| 29                                                  | 1   | U1                                         | IR3892 | PQFN 5x6mm                      | International<br>Rectifier | IR3892MPBF         |

#### TYPICAL OPERATING WAVEFORMS

Vin=12.0V, Vcc/LDO=5.3V, Vout<sub>1</sub>=1.8V, Vout<sub>2</sub>=1.2V,  $Io_1 = Io_2 = 0.6A$ , Room Temperature, No air flow

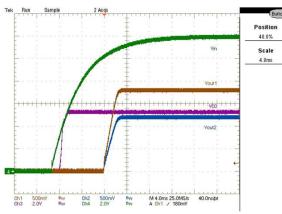



Fig. 7: Start up at 6A Load (Note 1) Ch<sub>1</sub>:Vout<sub>1</sub>, Ch<sub>2</sub>:Vout<sub>2</sub>, Ch<sub>3</sub>:Vcc/LDO, Ch<sub>4</sub>:Vin




Fig. 9: Start up with 1.52V Prebias, 0A Load Ch<sub>1</sub>:Enable<sub>1</sub>, Ch<sub>2</sub>:Vout<sub>1</sub>, Ch<sub>4</sub>:PGood<sub>1</sub>

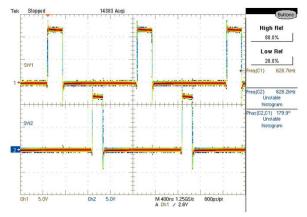



Fig. 11: Inductor switch node at 6A load / Channel  $Ch_1:SW_1, Ch_2:SW_2$ 

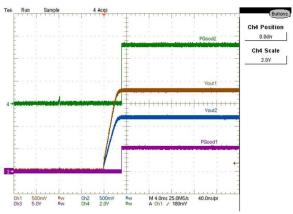



Fig. 8: Start up at 6A Load (Note 1) Ch<sub>1</sub>:Vout<sub>1</sub>, Ch<sub>2</sub>:Vout<sub>2</sub>, Ch<sub>3</sub>:PGood<sub>1</sub>, Ch<sub>4</sub>: PGood<sub>2</sub>

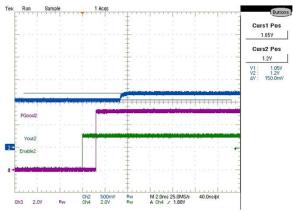



Fig. 10: Start up with 1.05V Prebias, 0A Load Ch<sub>1</sub>:Enable<sub>2</sub>, Ch<sub>2</sub>:Vout<sub>2</sub>, Ch<sub>4</sub>:PGood<sub>2</sub>

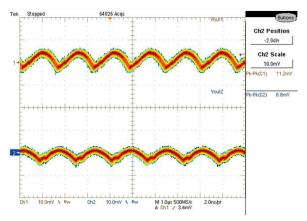
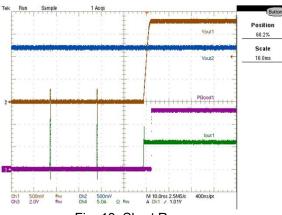
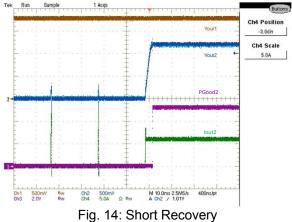
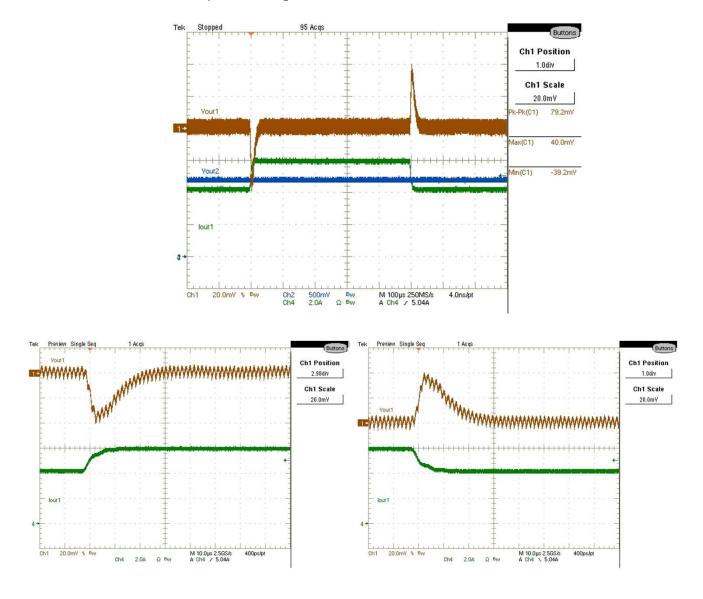
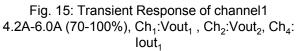



Fig. 12: Output Voltage Ripple, 6A load/channel (Note2)  $Ch_1$ : Vout<sub>1</sub>,  $Ch_2$ : Vout<sub>2</sub>

#### **TYPICAL OPERATING WAVEFORMS**

Vin=12.0V, Vcc/LDO=5.3V, Vout<sub>1</sub>=1.8V, Vout<sub>2</sub>=1.2V,  $Io_1 = Io_2 = 0.6A$ , Room Temperature, No air flow



Fig. 13: Short Recovery Ch<sub>1</sub>:Vout<sub>1</sub>, Ch<sub>2</sub>:Vout<sub>2</sub>, Ch<sub>3</sub>:PGood<sub>1</sub>, Ch<sub>4</sub>:lout<sub>1</sub>



Ch<sub>1</sub>:Vout<sub>1</sub>, Ch<sub>2</sub>:Vout<sub>2</sub>, Ch<sub>3</sub>:PGood<sub>2</sub>, Ch<sub>4</sub>: lout<sub>2</sub>

#### TYPICAL OPERATING WAVEFORMS Vin=12.0V, Vcc/LDO=5.3V, Vout<sub>1</sub>=1.8V, Vout<sub>2</sub>=1.2V, Room Temperature, No air flow





#### TYPICAL OPERATING WAVEFORMS Vin=12.0V, Vcc/LDO=5.3V, Vout<sub>1</sub>=1.8V, Vout<sub>2</sub>=1.2V, Room Temperature, No air flow

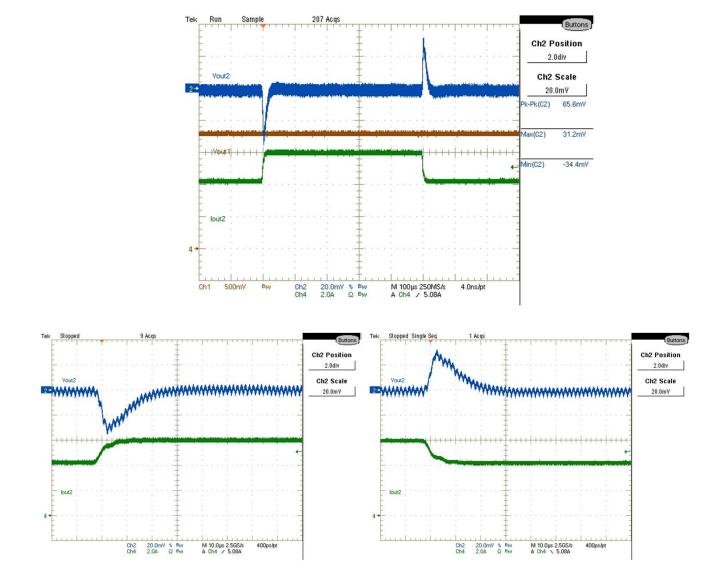
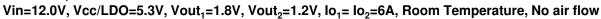
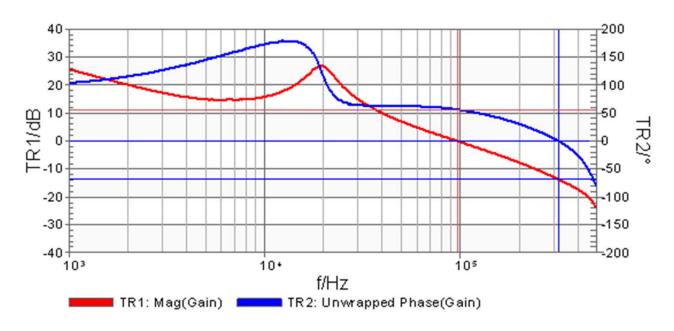
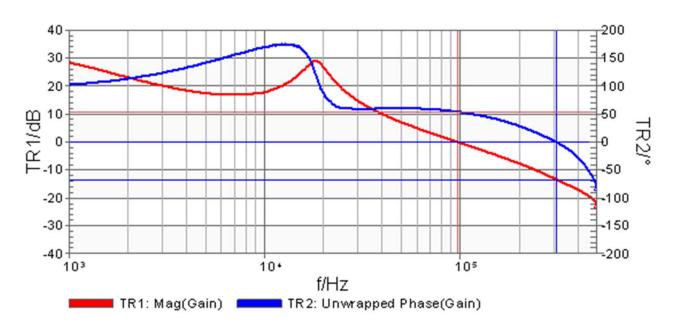





Fig. 16: Transient Response of channel2 4.2A-6.0A (70-100%), Ch<sub>1</sub>:Vout<sub>1</sub> , Ch<sub>2</sub>:Vout<sub>2</sub>, Ch<sub>4</sub>: lout<sub>2</sub>

Note1: Enable is tied to Vin via a resistor divider. Note2: Vo ripple signal is taken across C125 and C225 capacitors.

### Bode Plot, Channel1



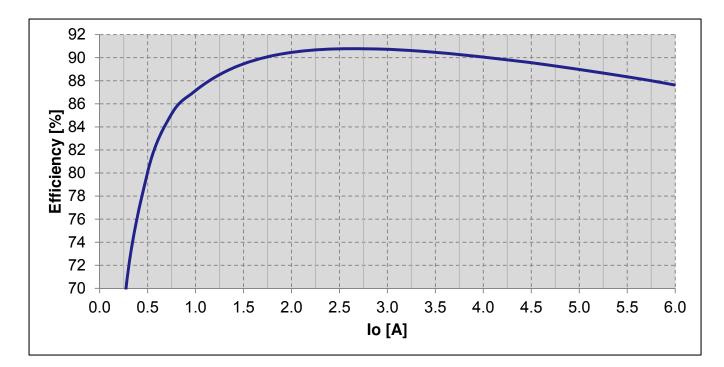



|          | Frequency   | Trace1 | Trace2     |          |
|----------|-------------|--------|------------|----------|
| Cursor 1 | 96.285 kHz  |        | 0.000 dB   | 56.180 ° |
| Cursor 2 | 317.813 kHz |        | -13.731 dB | 0.000 *  |

Fig.17: Bode Plot of CH1 at 6A load: Fo = 96.3 kHz; Phase Margin = 56.2°; Gain Margin = 13.7dB

### Bode Plot, Channel2






|          | Frequency   | Trace1 | Trace2     |             |
|----------|-------------|--------|------------|-------------|
| Cursor 1 | 97.002 kHz  |        | 0.000 dB   | 53.985 °    |
| Cursor 2 | 310.212 kHz |        | -13.423 dB | -113.687 f° |

Fig.18: Bode Plot of CH2 at 6A load: Fo = 97.0 kHz; Phase Margin = 54.0°; Gain Margin = 13.4dB

### Efficiency and Power Loss of channel1

Vin=12.0V, Vcc/LDO=5.3V, Vout<sub>1</sub>=1.8V, Vout<sub>2</sub> is disabled (EN2=low),  $lo_1 = 0.6A$ , Room Temperature, No air flow



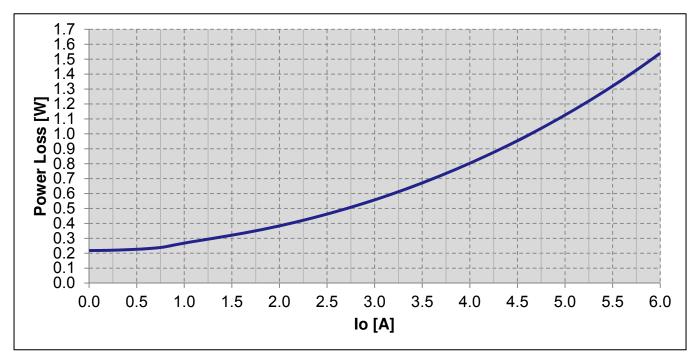
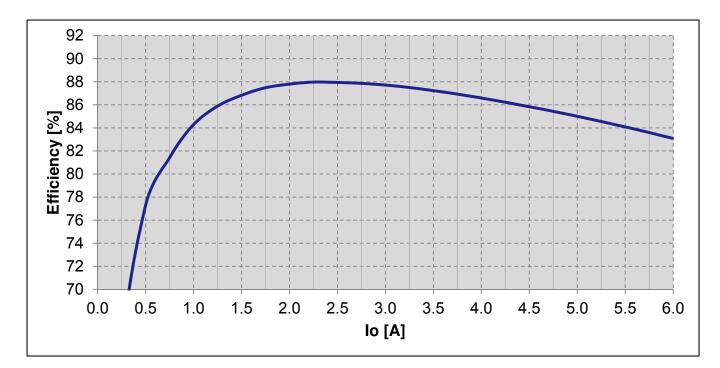




Fig.19: Efficiency and power loss vs. load current for channel1 (Vout<sub>1</sub> = 1.8V)

### Efficiency and Power Loss of channel2

Vin=12.0V, Vcc/LDO=5.3V, Vout<sub>1</sub> is disabled (EN1=low), Vout<sub>2</sub>=1.2V, Io<sub>2</sub>=0-6A, Room Temperature, No air flow



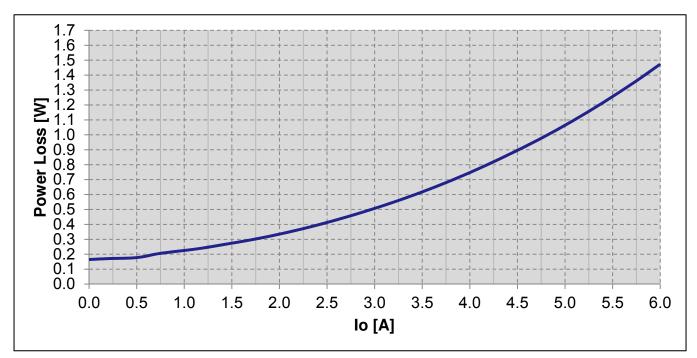
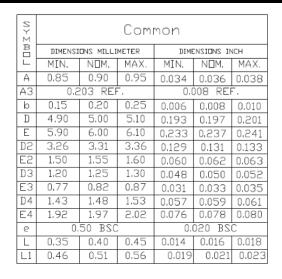
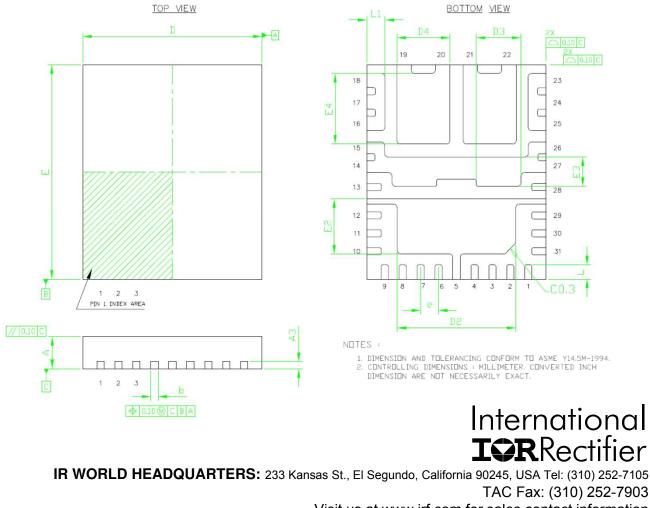



Fig.20: Efficiency and power loss vs. load current for channel2 (Vout<sub>2</sub> = 1.2V)

International





#### **Thermal Image**

Vin=12.0V, Vcc/LDO=5.3V, Vout1=1.8V, Vout2=1.2V, IO1= IO2=6A, Room Temperature, LFM=100



Fig.21: Thermal Image at  $Io_1=Io_2=6A$  load IR3892 = 73.4°C Inductor\_Ch1 = 41.1°C Inductor\_Ch2 = 40.6°C





Visit us at www.irf.com for sales contact information Data and specifications subject to change without notice.