

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

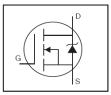
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

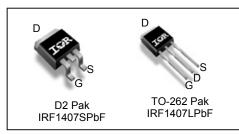
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- · Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free


Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The D2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF1407L) is available for low-profile applications.

HEXFET® Power MOSFET

$V_{ exttt{DSS}}$	75V
R _{DS(on)}	0.0078Ω
I _D	100A®

G	D	S
Gate	Drain	Source

Base next number Backage Type		Standard Pack		Orderable Part Number	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
IRF1407LPbF	TO-262	Tube	50	IRF1407LPbF (Obsolete)	
IRF1407SPbF	D2-Pak	Tape and Reel Left	800	IRF1407STRLPbF	

Absolute Maximum Ratings					
Symbol	Parameter	Max.	Units		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ®	100©			
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V ®	70⑥	Α		
I _{DM}	Pulsed Drain Current ①®	520			
P _D @T _A = 25°C	Maximum Power Dissipation	3.8	W		
P _D @T _C = 25°C	Maximum Power Dissipation	200	W		
	Linear Derating Factor	1.3	W/°C		
V_{GS}	Gate-to-Source Voltage	± 20	V		
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②®	390	mJ		
I _{AR}	Avalanche Current ①	See Fig.15,16, 12a, 12b	Α		
E _{AR}	Repetitive Avalanche Energy ⑦		mJ		
dv/dt	Peak Diode Recovery dv/dt3®	4.6	V/ns		
T_J	Operating Junction and	-55 to + 175			
T _{STG}	Storage Temperature Range		°C		
	Soldering Temperature, for 10 seconds (1.6mm from case)	300			
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)			

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.75	°CAM
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount, steady state)		40	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.09		V/°C	Reference to 25°C, I _D = 1mA ®
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.0078	Ω	V _{GS} = 10V, I _D = 78A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	74			S	V _{DS} = 25V, I _D = 78A®
Inno	Drain-to-Source Leakage Current			20	μA	V_{DS} =75 V, V_{GS} = 0V
I _{DSS}				250	μΛ	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-200	II/	$V_{GS} = -20V$
Q_g	Total Gate Charge		160	250		$I_D = 78A$
Q_{gs}	Gate-to-Source Charge		35	52	nC	V _{DS} = 60V
Q_{qd}	Gate-to-Drain Charge		54	81		V _{GS} = 10V 4 8
$\mathbf{t}_{d(on)}$	Turn-On Delay Time		11			$V_{DD} = 38V$
t _r	Rise Time		150		no	I _D =78A
t _{d(off)}	Turn-Off Delay Time		150		ns	$R_G = 2.5\Omega$
t _f	Fall Time		140			V _{GS} = 10V 4 8
L _D	Internal Drain Inductance		4.5		nH	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		1111	from package and center of die contact
C _{iss}	Input Capacitance		5600			$V_{GS} = 0V$
Coss	Output Capacitance		890			$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		190			f = 1.0kHz, See Fig. 5®
Coss	Output Capacitance		5800		pF	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0kHz$
Coss	Output Capacitance		560			$V_{GS} = 0V, V_{DS} = 60V f = 1.0kHz$
Coss eff.	Effective Output Capacitance		1100			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V$

Source-Drain Ratings and Characteristics

	<u> </u>					
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			100⑥		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			520		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 78A, V_{GS} = 0V \oplus 8$
t _{rr}	Reverse Recovery Time		110	170	ns	$T_J = 25^{\circ}C$, $I_F = 78A$
Q _{rr}	Reverse Recovery Charge		390	590	nC	di/dt = 100A/µs ④®
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by L _S +L _D)

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② starting T_J = 25°C, L = 0.13mH, R_G = 25 Ω , I_{AS} = 78A, V_{GS} =10V. (See fig. 12)
- $\exists \quad I_{SD} \leq 78A, \ di/dt \leq 320A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- ① Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \circ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- ② Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- Uses IRF1407 data and test conditions.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

2016-5-26

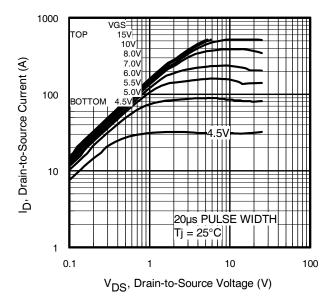


Fig. 1 Typical Output Characteristics

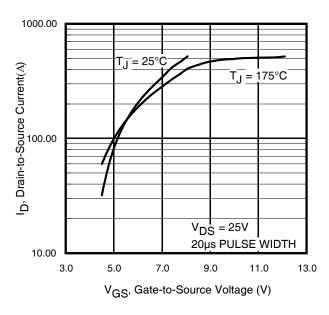


Fig. 3 Typical Transfer Characteristics

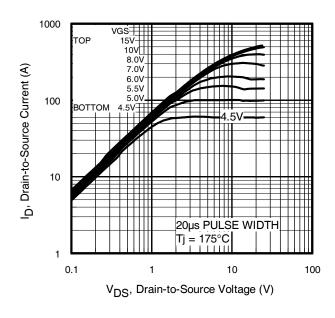
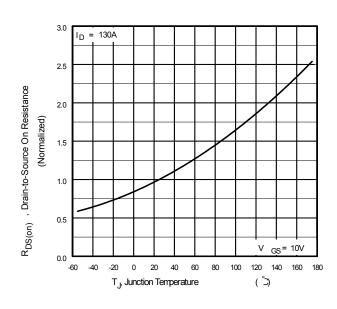
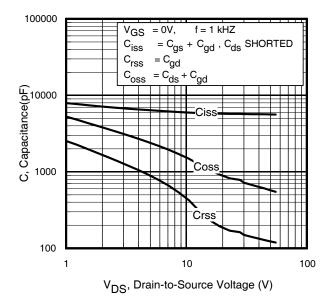




Fig. 2 Typical Output Characteristics

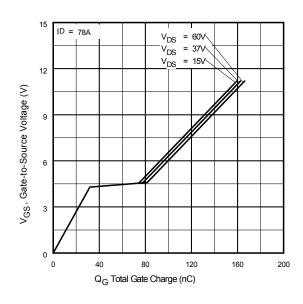


Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

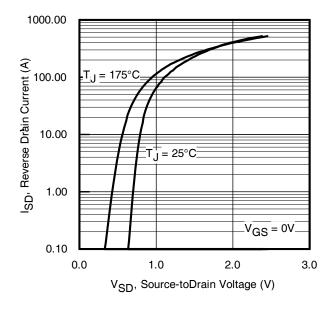


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

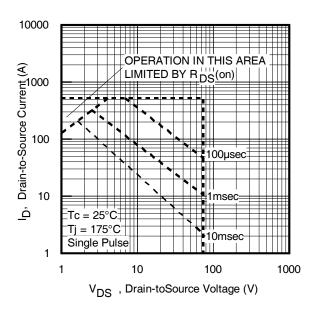


Fig 8. Maximum Safe Operating Area

4

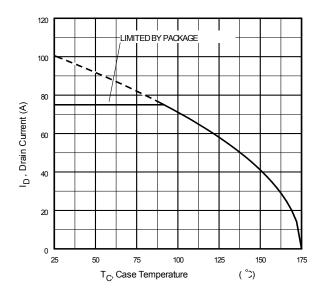


Fig 9. Maximum Drain Current vs. Case Temperature

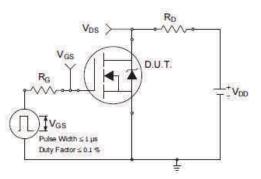


Fig 10a. Switching Time Test Circuit

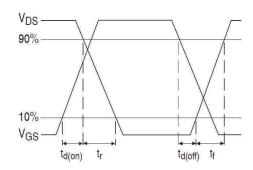


Fig 10b. Switching Time Waveforms

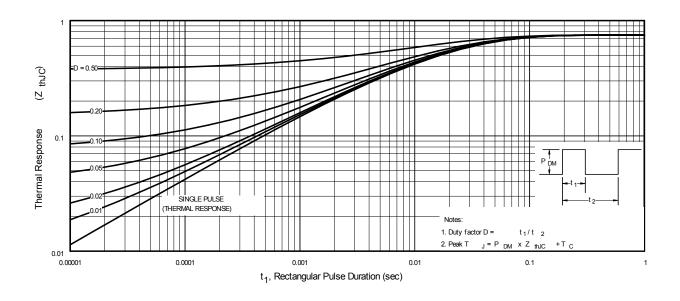


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

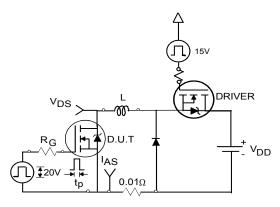


Fig 12a. Unclamped Inductive Test Circuit

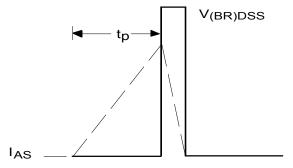


Fig 12b. Unclamped Inductive Waveforms

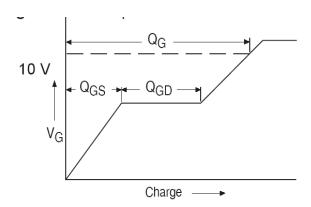


Fig 13a. Gate Charge Waveform

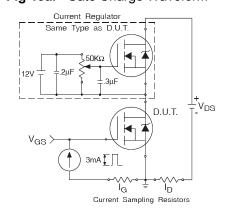
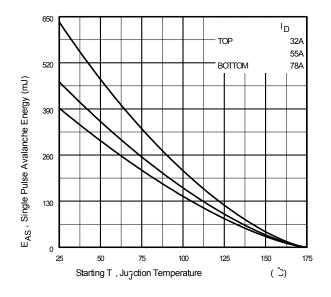



Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy vs. Drain Current

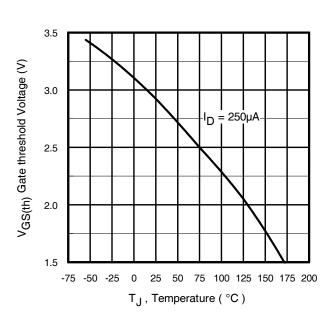


Fig 14. Threshold Voltage vs. Temperature

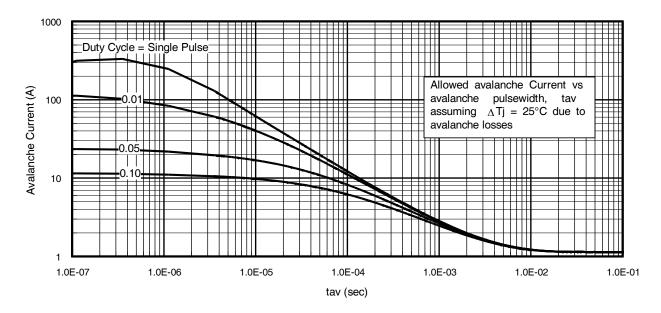
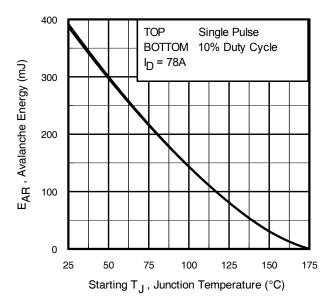



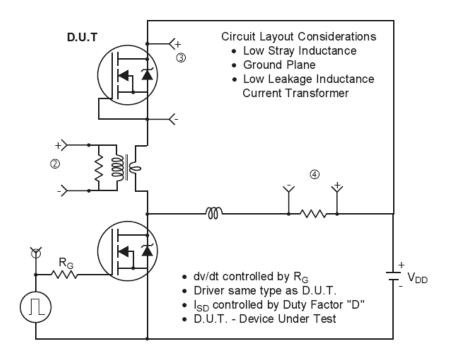
Fig 15. Typical Avalanche Current vs. Pulse width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

tav = Average time in avalanche.


D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Peak Diode Recovery dv/dt Test Circuit

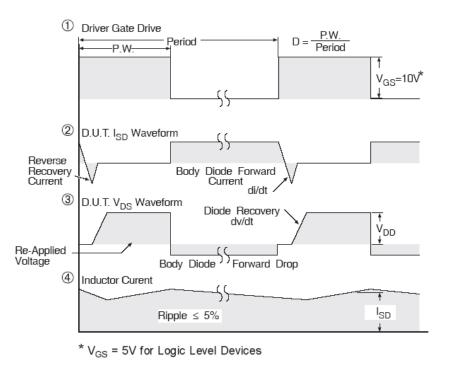
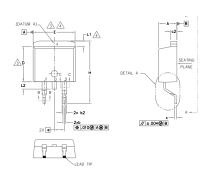
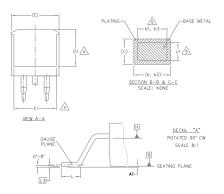




Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

D2-Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

7. CONTROLLING DIMENSION: INCH.

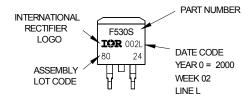
8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

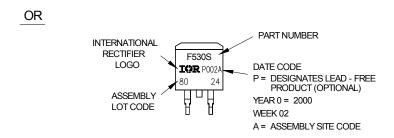
	I					
S	DIMENSIONS					
M B	MILLIM	MILLIMETERS INCHES			0 T E S	
O L	MIN.	MAX.	MIN.	MAX.	S	
А	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
Ь	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	_	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	_	.245	_	4	
е	2.54	BSC	.100	.100 BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	_	.066	4	
L2	_	1.78	_	.070		
L3	0.25	BSC	.010	BSC		

LEAD ASSIGNMENTS

DIODES

1.- ANODE (TWO DIE) / OPEN (ONE DIE)
2, 4.- CATHODE
3.- ANODE

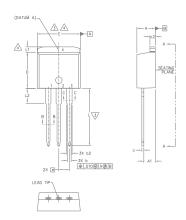

IGBTs, CoPACK 2, 4.- COLLECTOR 3.- EMITTER

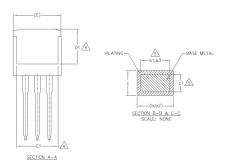

D2-Pak (TO-263AB) Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000

IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead - Free"




Note: For the most current drawing please refer to Infineon's web site www.infineon.com

2016-5-26

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3\Dimension D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

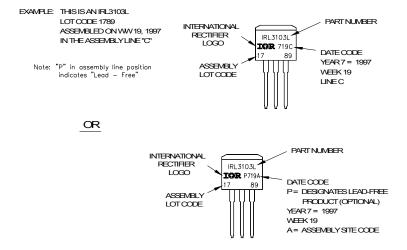
5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. CONTROLLING DIMENSION: INCH.
- 7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

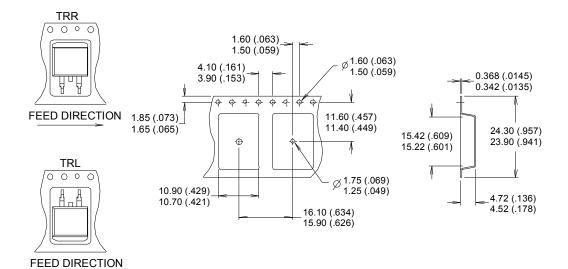

<u>HEXFET</u>

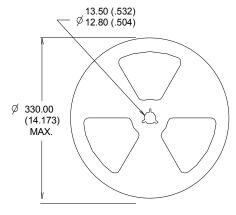
1.- ANODE (TWO DIE) / OPEN (ONE DIE)
2, 4.- CATHODE
3.- ANODE

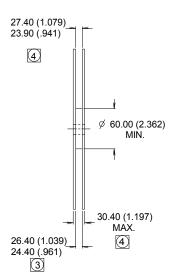
2.- DRAIN 3.- SOURCE 4.- DRAIN

S					
Y M	DIMENSIONS				
В	MILLIM	ETERS	INC	INCHES	
0 L	MIN.	MAX.	MIN.	MAX.	O T E S
А	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245		4
е	2.54	BSC	.100 BSC		
L	13.46	14.10	.530	.555	
L1	_	1.65	_	.065	4
L2	3.56	3.71	.140	.146	

TO-262 Part Marking Information




Note: For the most current drawing please refer to Infineon's web site www.infineon.com


10 2016-5-26

D2-Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. COMFORMS TO EIA-418.
- CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ^{††}				
Moisture Sensitivity Level	D2-Pak	MSL1 (per JEDEC J-STD-020D) ^{††}			
	TO-262 N/A				
RoHS Compliant	Yes				

- † Qualification standards can be found at Infineon's web site <u>www.infineon.com</u>
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments				
4/20/2016	 Updated datasheet with corporate template. Corrected typo on Fig. 3 from V_{DS} = 15V to V_{DS} = 25V on page 3. Corrected typo on Fig. 5 from f = 1MHz to 1kHz on page 4. Updated Package outline on pages 9,10. 				
5/26/2016	 Added disclaimer on last page. TO-262 package was removed from ordering information since it is EOL on page 1. 				

Trademarks of Infineon Technologies AG

HIVIC™, μΙΡΜ™, μΡΕC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRsadge™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.