

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

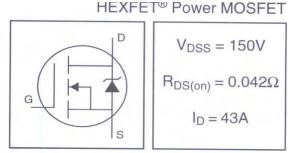
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

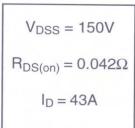
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

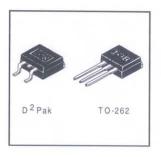
International IOR Rectifier

IRF3415S/LPbF

Advanced Process Technology


- Surface Mount (IRF3415S)
- Low-profile through-hole (IRF3415L)
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF3415L) is available for lowprofile applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ^⑤	43		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10VS	30	A	
I _{DM}	Pulsed Drain Current ①⑤	150		
P _D @T _A = 25°C	Power Dissipation	3.8	W	
P _D @T _C = 25°C	Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy 2 5	590	mJ	
laR	Avalanche Current①	22	А	
EAR	Repetitive Avalanche Energy①	20	mJ	
dv/dt	Peak Diode Recovery dv/dt 3 5	5.0	V/ns	
Tj	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
ReJC	Junction-to-Case	-	0.75	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted, steady-state)**		40	- °C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	_	0.17	_	V/°C	Reference to 25°C, I _D = 1mA®
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	_	0.042	Ω	V _{GS} = 10V, I _D = 22A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
g _{fs}	Forward Transconductance	19	ş		S	V _{DS} = 50V, I _D = 22A⑤
loss	Drain-to-Source Leakage Current	_		25	μА	V _{DS} = 150V, V _{GS} = 0V
200	2-air to obaroo Lourago Gurierii	_	_	250	μА	V _{DS} = 120V, V _{GS} = 0V, T _J = 150°C
I _{GSS}	Gate-to-Source Forward Leakage			100		V _{GS} = 20V
GSS	Gate-to-Source Reverse Leakage		_	-100	nA	V _{GS} = -20V
Qg	Total Gate Charge	_	_	200		I _D = 22A
Qgs	Gate-to-Source Charge	-	_	17	nC	V _{DS} = 120V
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	_	98		V _{GS} = 10V, See Fig. 6 and 13 4 5
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 75V
tr	RiseTime		55	_		I _D = 22A
t _{d(off)}	Turn-Off Delay Time		71		ns	$R_G = 2.5\Omega$
t _f	FallTime		69			$R_D = 3.3\Omega$, See Fig. 10 $\textcircled{4}$ $\textcircled{5}$
Ls	Internal Source Inductance	ļ	7.5		nH	Between lead, and center of die contact
Ciss	Input Capacitance	_	2400			V _{GS} = 0V
Coss	Output Capacitance	_	640		pF	V _{DS} = 25V
Crss	Reverse Transfer Capacitance	-	340	_		f = 1.0MHz, See Fig. 5®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
k	Continuous Source Current (Body Diode)	_		43		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①⑤	_	-	150	A	integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 22A, V _{GS} = 0V 4
t _{rr}	Reverse Recovery Time		260	390	ns	T _J = 25°C, I _F = 22A
Qrr	Reverse Recovery Charge		2.2	3.3	uС	di/dt = 100A/µs ③ ⑤
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\begin{tabular}{ll} \hline @ Starting $T_J = 25^\circ$C, $L = 2.4mH$\\ $R_G = 25\Omega$, $I_{AS} = 22A$. (See Figure 12) \\ \hline \end{tabular}$
- ⑤ Uses IRF3415 data and test conditions
- ** When mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended soldering techniques refer to application note #AN-994.

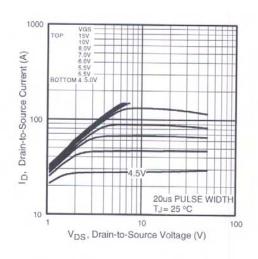


Fig 1. Typical Output Characteristics

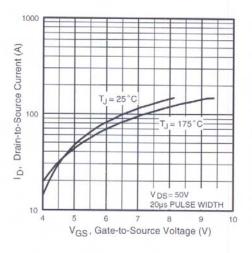


Fig 3. Typical Transfer Characteristics

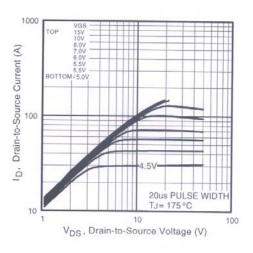


Fig 2. Typical Output Characteristics

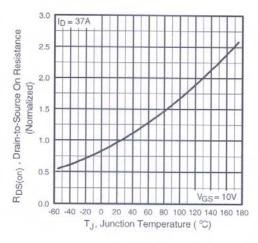


Fig 4. Normalized On-Resistance Vs. Temperature

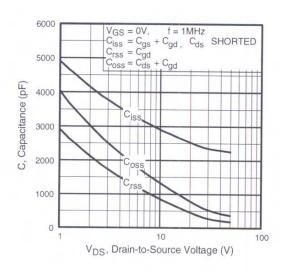


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

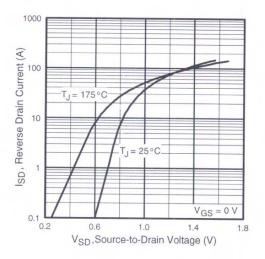


Fig 7. Typical Source-Drain Diode Forward Voltage

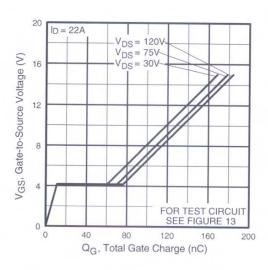


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

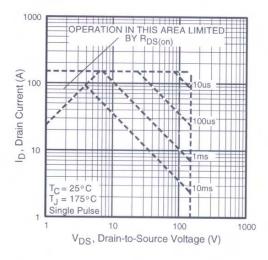


Fig 8. Maximum Safe Operating Area

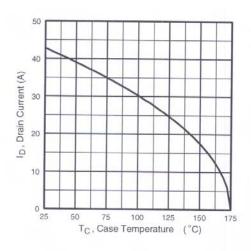


Fig 9. Maximum Drain Current Vs. Case Temperature

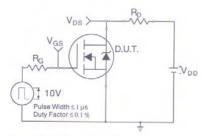


Fig 10a. Switching Time Test Circuit

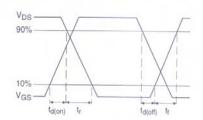


Fig 10b. Switching Time Waveforms

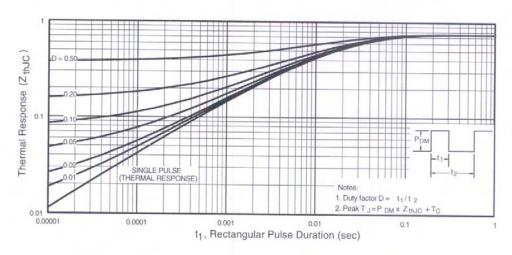


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

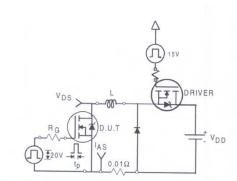


Fig 12a. Unclamped Inductive Test Circuit

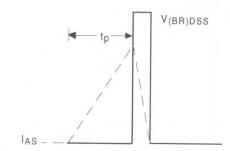


Fig 12b. Unclamped Inductive Waveforms

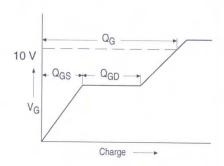


Fig 13a. Basic Gate Charge Waveform

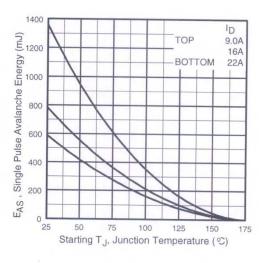


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

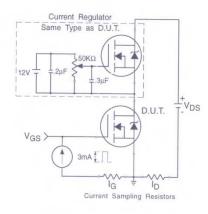
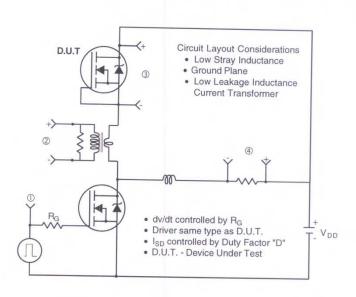



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

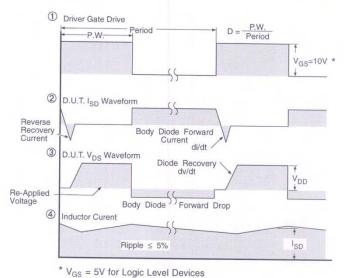
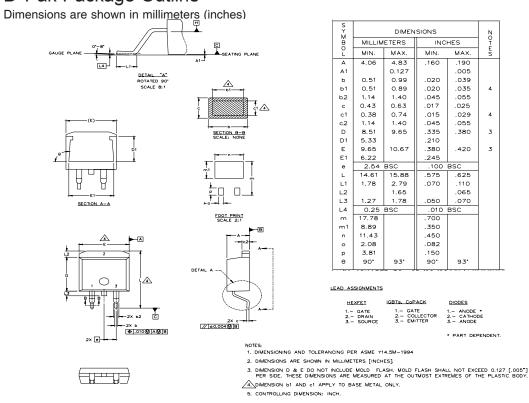
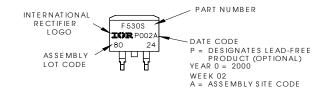
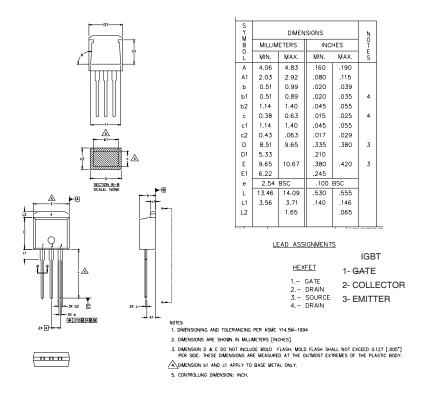



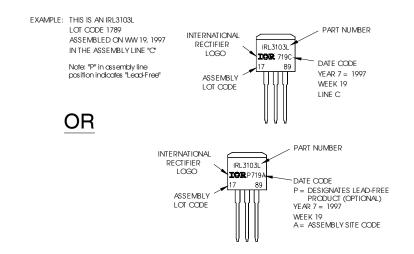
Fig 14. For N-Channel HEXFETS


International TOR Rectifier

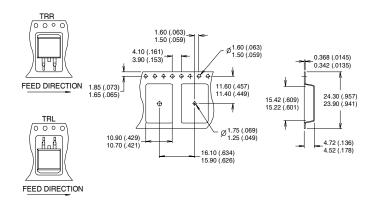
D²Pak Package Outline

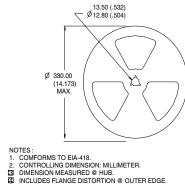


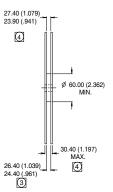
D²Pak Part Marking Information (Lead-Free)



TO-262 Package Outline




TO-262 Part Marking Information



D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.03/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/