

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International TOR Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET®TRANSISTORS THRU-HOLE (TO-204AA/AE)

JANTX2N6770 JANTXV2N6770 500V, N-CHANNEL

Product Summary

Part Number	BVDSS	RDS(on)	I D
IRF450	500V	0.400Ω	12A

The HEXFET[®] technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling

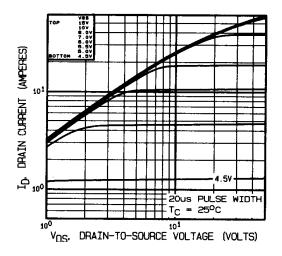
Absolute Maximum Ratings

	Parameter		Units
I _D @ V _{GS} =0V, T _C = 25°C	Continuous Drain Current	12	
$I_D @ V_{GS} = 0V, T_C = 100^{\circ}C$	Continuous Drain Current	7.75	A
I_{DM}	Pulsed Drain Current ①	48	
P _D @ T _C = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	8.0	mJ
IAR	Avalanche Current ①	12	A
EAR	Repetitive Avalanche Energy ①	-	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns
ТЈ	Operating Junction	-55 to 150	
T_{STG}	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	11.5(typical)	g

For footnotes refer to the last page

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500	_	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	_	0.78	_	V/°C	Reference to 25° C, $I_D = 1.0$ mA
R _{DS} (on)	Static Drain-to-Source On-State	_	_	0.400		$V_{GS} = 10V, I_D = 7.75A$
	Resistance	_	_	0.500		$V_{GS} = 10V$, $I_{D} = 12A \oplus$
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
gfs	Forward Transconductance	5.5	_	_	S (Q)	$V_{DS} > 15V$, $I_{DS} = 7.75A$ ④
IDSS	Zero Gate Voltage Drain Current	_	_	25		V _{DS} =400V, V _{GS} =0V
		_	_	250	μΑ	$V_{DS} = 400V$
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	IIA	$V_{GS} = -20V$
Qg	Total Gate Charge	55	_	120		V _{GS} =10V, ID=12A
Qgs	Gate-to-Source Charge	5.0	_	19	nC	$V_{DS} = 250V$
Qgd	Gate-to-Drain ('Miller') Charge	27	_	70		
t _{d(on)}	Turn-On Delay Time	_	_	35		$V_{\rm DD}$ =250V, $I_{\rm D}$ =12A,
tr	Rise Time	_	_	190	n s	$R_G = 2.35\Omega$
td(off)	Turn-Off Delay Time	_	_	170	11 8	
tf	Fall Time	_	_	130		
L _S + L _D	Total Inductance	_	6.1	_	nН	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
Ciss	Input Capacitance	_	2700			$V_{GS} = 0V, V_{DS} = 25V$
Coss	Output Capacitance	_	600	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	240	_		


Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)		_	12	A	
ISM	Pulse Source Current (Body Diode) ①		_	48	11	
V _{SD}	Diode Forward Voltage	-	—	1.7	V	$T_j = 25^{\circ}C$, $I_S = 12A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time		_	1600	nS	Tj = 25°C, I _F =12A, di/dt \leq 100A/ μ s
QRR	Reverse Recovery Charge		_	14	μC	$V_{DD} \le 50V \ \oplus$
ton	Forward Turn-On Time Intrinsic tur	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.				

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction to Case	_	_	0.83	°C/W	
R _{th} JA	Junction to Ambient		_	30	C/W	Typical socket mount

For footnotes refer to the last page

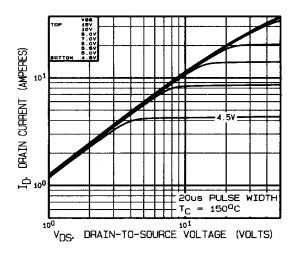


Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

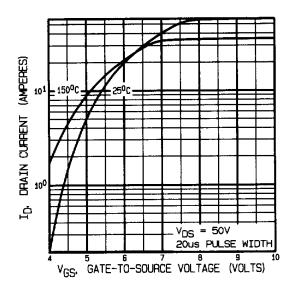
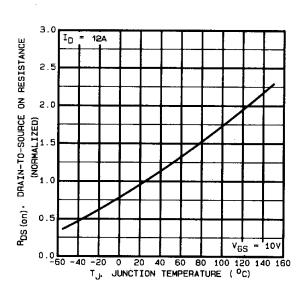
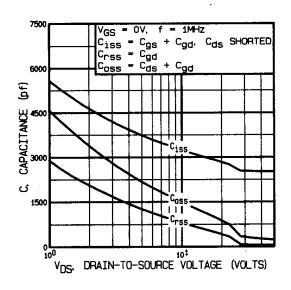




Fig 3. Typical Transfer Characteristics

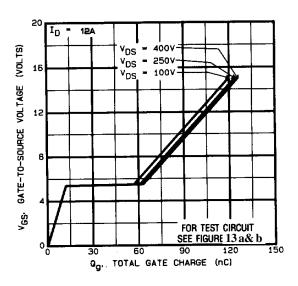


Fig 4. Normalized On-Resistance Vs. Temperature

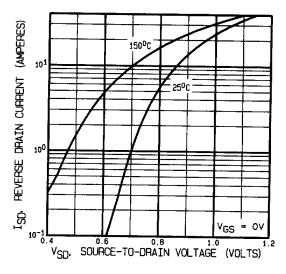

3

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

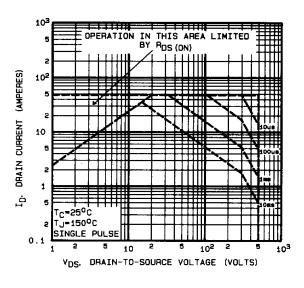
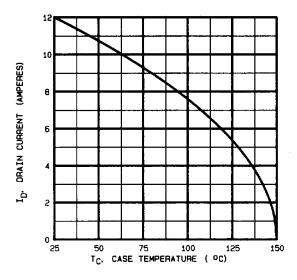



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

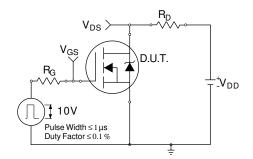


Fig 10a. Switching Time Test Circuit

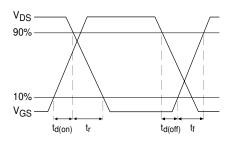


Fig 10b. Switching Time Waveforms

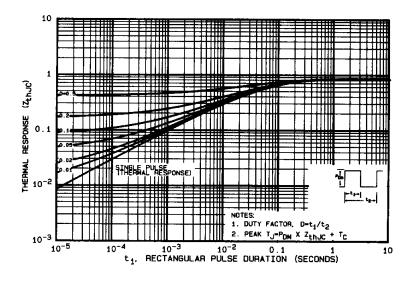


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

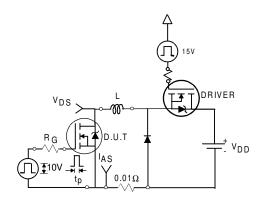


Fig 12a. Unclamped Inductive Test Circuit

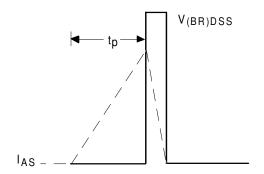


Fig 12b. Unclamped Inductive Waveforms

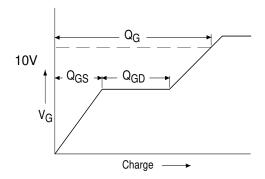
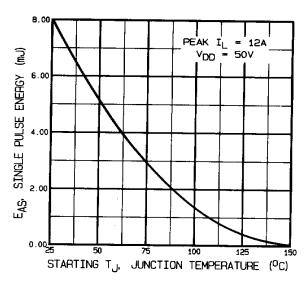
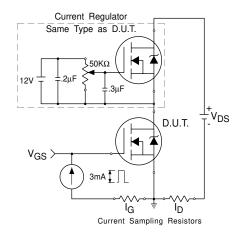
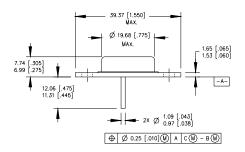



Fig 13a. Basic Gate Charge Waveform

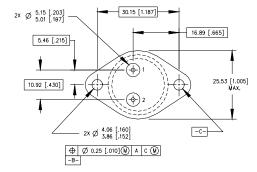
Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit

Foot Notes:

- Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 50V$, starting $T_J = 25$ °C, Peak $I_L = 12A$,


- ③ I_{SD} \leq 12, di/dt \leq 130A/μs, V_{DD} \leq 500V, T_J \leq 150°C Suggested RG =2.35 Ω
- ④ Pulse width ≤ 300 μs; Duty Cycle ≤ 2%

Case Outline and Dimensions —TO-204AA (Modified TO-3)

HEXFET	SCHOTTKY	IGBT
- SOURCE	1 - ANODE 1	1 - GATE
2 - GATE	2 - ANODE 2	2 - EMITTER
3 – DRAIN (CASE)	3 - COMMON CATHODE (CASE)	3 - COLLECTOR (CASI
I – SOURCE 2 – GATE	1 - ANODE 1 2 - ANODE 2	1 - GATE 2 - EMITTER

PIN ASSIGNMENTS

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION : INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-204-AA.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086

IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630

IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 01/01