

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

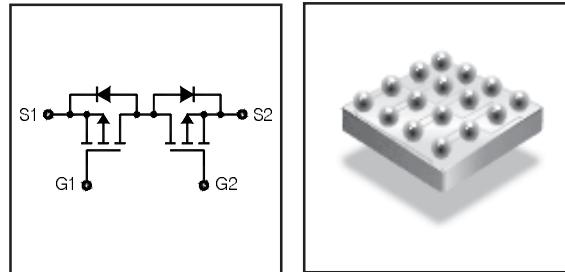
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OBSOLETE

PD - 93943

International
IR Rectifier

IRF6150


HEXFET® Power MOSFET

- Ultra Low $R_{SS(on)}$ per Footprint Area
- Low Thermal Resistance
- Bi-Directional P-Channel Switch
- Super Low Profile (<.8mm)
- Available Tested on Tape & Reel

V_{SS}	$R_{SS(on)} \text{ max}$	I_S
-20V	0.036Ω@ $V_{GS1,2} = -4.5V$	-7.9A
	0.052Ω@ $V_{GS1,2} = -2.5V$	-6.3A

Description

True chip-scale packaging is available from International Rectifier. Through the use of advanced processing techniques and a unique packaging concept, extremely low on-resistance and the highest power densities in the industry have been made available for battery and load management applications. These benefits, combined with the ruggedized device design that International Rectifier is well known for, provides the designer with an extremely efficient and reliable device.

The FlipFET™ package, is one-third the footprint of a comparable SO-8 package and has a profile of less than .8mm. Combined with the low thermal resistance of the die level device, this makes the FlipFET™ the best device for applications where printed circuit board space is at a premium and in extremely thin application environments such as battery packs, cell phones and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{SS}	Source- Source Voltage	-20	V
$I_S @ T_C = 25^\circ\text{C}$	Continuous Current, $V_{GS1} = V_{GS2} = -4.5V$	± 7.9	A
$I_S @ T_C = 70^\circ\text{C}$	Continuous Current, $V_{GS1} = V_{GS2} = -4.5V$	± 6.3	
I_{SM}	Pulsed Current ①	± 40	
$P_D @ T_C = 25^\circ\text{C}$	Power Dissipation	3.0	W
$P_D @ T_C = 70^\circ\text{C}$	Power Dissipation	1.9	
	Linear Derating Factor	24	mW/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T_J, T_{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Typ.	Max.	Units
R_{0JA}	Junction-to-Ambient③		42	°C/W
R_{0J-PCB}	Junction-to-PCB mounted	17	—	

OBSOLETE

IRF6150

International
Rectifier

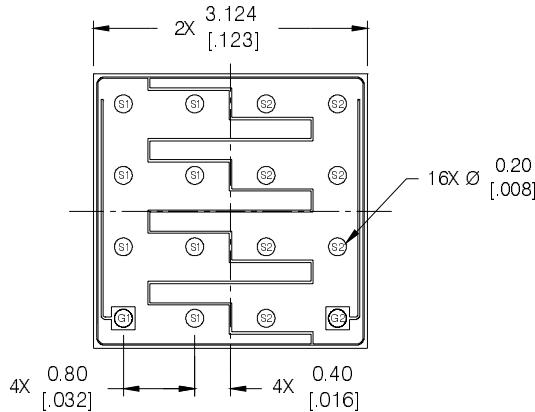
Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(\text{BR})\text{SSS}}$	Source-to-Source Breakdown Voltage	-20	—	—	V	$V_{\text{GS}} = 0\text{V}$, $I_D = -250\mu\text{A}$
$\Delta V_{(\text{BR})\text{SSS}/\Delta T_J}$	Breakdown Voltage Temp. Coefficient	—	-TBD	—	V/ $^\circ\text{C}$	Reference to 25°C , $I_D = -1\text{mA}$
$R_{\text{SS}(\text{on})}$	Static Source-to-Source On-Resistance	—	0.036	Ω	$V_{\text{GS}1} = V_{\text{GS}2} = -4.5\text{V}$, $I_S = -7.9\text{A}$ ②	
		—	0.052		$V_{\text{GS}1} = V_{\text{GS}2} = -2.5\text{V}$, $I_S = -6.3\text{A}$ ②	
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	-0.45	—	-1.2	V	$V_{\text{SS}} = V_{\text{GS}}$, $I_S = -250\mu\text{A}$
g_{fs}	Forward Transconductance	TBD	—	—	S	$V_{\text{SS}} = -10\text{V}$, $I_S = -7.9\text{A}$
I_{SSS}	Zero Gate Voltage Source Current	—	—	-1.0	μA	$V_{\text{SS}} = -20\text{V}$, $V_{\text{GS}} = 0\text{V}$
		—	—	-25		$V_{\text{SS}} = -16\text{V}$, $V_{\text{GS}} = 0\text{V}$, $T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	100	nA	$V_{\text{GS}} = 12\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-100		$V_{\text{GS}} = -12\text{V}$
Q_g	Total Gate Charge	—	TBD	TBD	nC	$I_S = -\text{TBD A}$
Q_{gs}	Gate-to-Source Charge	—	TBD	TBD		$V_{\text{SS}} = -16\text{V}$
$Q_{\text{G1-S2}}$	Miller Charge	—	TBD	TBD		$V_{\text{GS}} = -5.0\text{V}$ ④
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	—	TBD	—	ns	$V_{\text{SS}} = -10\text{V}$
t_r	Rise Time	—	TBD	—		$I_S = -1.0\text{A}$
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time	—	TBD	—		$R_G = 6.0\Omega$
t_f	Fall Time	—	TBD	—		$V_{\text{GS}} = -5.0\text{V}$ ④
C_{iss}	Input Capacitance	—	TBD	—	pF	$V_{\text{GS}} = 0\text{V}$
C_{oss}	Output Capacitance	—	TBD	—		$V_{\text{SS}} = -15\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	TBD	—		$f = 1.0\text{MHz}$

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

② Pulse width $\leq 400\mu\text{s}$; duty cycle $\leq 2\%$. Gate voltage applied to both gates.


③ When mounted on 1 inch square 2oz copper on FR-4

OBSOLETE

International
IR Rectifier

IRF6150

Bi-Directional MOSFET Outline Dimension

NOTES:

1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
2. CONTROLLING DIMENSION: [INCH].
3. LETTER DESIGNATION:
S = SOURCE SK = SOURCE KELVIN E = Emitter
G = GATE IS = CURRENT SENSE
4. DIMENSIONAL TOLERANCES:
BONDING PADS: < 0.635 TOLERANCE = +/- 0.013
WIDTH < [.0250] TOLERANCE = +/- [.0005]
& > 0.635 TOLERANCE = +/- 0.025
LENGTH > [.0250] TOLERANCE = +/- [.0010]
OVERALL DIE: < 1.270 TOLERANCE = +/- 0.102
WIDTH < [.050] TOLERANCE = +/- [.004]
& > 1.270 TOLERANCE = +/- 0.203
LENGTH > [.050] TOLERANCE = +/- [.008]
5. UNLESS OTHERWISE NOTED ALL DIE ARE GEN III

Data and specifications subject to change without notice.

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 07/04

www.irf.com