

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

- Generation V Technology
- Ultra Low On-Resistance
- Dual P Channel MOSFET
- Surface Mount
- · Available in Tape & Reel
- Dynamic dv/dt Rating
- · Fast Switching
- Lead-Free

HEXFET® Power MOSFET

V _{DSS}	-55V
R _{DS(on)} max.	0.105Ω
I _D	-3.4A

G	D	S
Gate	Drain	Source

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized lead frame for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

Paga part number	Dookogo Typo	Standard Pack Orderable Part Num		Standard Pack		Orderable Port Number
Base part number	Package Type	Form	Quantity	Orderable Part Number		
IRF7342PbF	SO-8	Tape and Reel	4000	IRF7342PbF		

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	-55	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.4		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.7	A	
I _{DM}	Pulsed Drain Current ①	-27		
P _D @T _A = 25°C	Maximum Power Dissipation	2.0	107	
P _D @T _A = 70°C	Maximum Power Dissipation	1.3	W	
	Linear De rating Factor	0.016	mW°/C	
V_{GS}	Gate-to-Source Voltage	± 20	.,,	
V_{GSM}	Gate-to-Source Voltage Single Pulse tp < 10μs	30		
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	114	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
ГЈ	Operating Junction and -55 to + 150			
T_{STG}	Storage Temperature Range		°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ©		62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.054		V/°C	Reference to 25°C, I _D = -1mA
D	Static Drain-to-Source On-Resistance		0.095	0.105		$V_{GS} = -10V, I_D = -3.4A \oplus$
$R_{DS(on)}$	Static Drain-to-Source On-Resistance		0.150	0.170	Ω	$V_{GS} = -4.5V, I_D = -2.7A$ @
$V_{GS(th)}$	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Trans conductance	3.3			S	$V_{DS} = -10V, I_{D} = -3.1A$
	Drain to Source Leakage Current			-2.0	μA	$V_{DS} = -55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			-25	μΑ	$V_{DS} = -55V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -20V$
IGSS	Gate-to-Source Reverse Leakage			100	ПА	$V_{GS} = 20V$
Q_g	Total Gate Charge		26	38		$I_D = -3.1A$
Q_{gs}	Gate-to-Source Charge		3.0	4.5	nC	V _{DS} = -44V
Q_{gd}	Gate-to-Drain ('Miller') Charge		8.4	13		V _{GS} = -10V, See Fig.10
$t_{d(on)}$	Turn-On Delay Time		14	22		$V_{DD} = -28V$
t _r	Rise Time		10	15		$I_{D} = -1.0A$
$t_{d(off)}$	Turn-Off Delay Time		43	64	ns	$R_G = 6.0\Omega$
t _f	Fall Time		22	32		$R_D = 16\Omega \oplus$
C _{iss}	Input Capacitance		690			$V_{GS} = 0V$
C _{oss}	Output Capacitance		210		рF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		86			f = 1.0MHz, See Fig.9

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			-2.0		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-27		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C, I_S = -2.0A, V_{GS} = 0V \oplus$
t _{rr}	Reverse Recovery Time		54	80	ns	$T_J = 25^{\circ}C$, $I_F = -2.0A$,
Q _{rr}	Reverse Recovery Charge		85	130	nC	di/dt = 100A/µs ④

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- ② Starting T_J = 25°C, L = 20mH, R_G = 25 Ω , I_{AS} = -3.4A. (See Fig. 8)
- $\label{eq:local_local_local_local} \begin{tabular}{l} \begin{tabula$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

2016-5-26

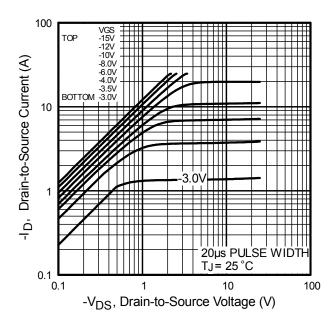


Fig. 1 Typical Output Characteristics

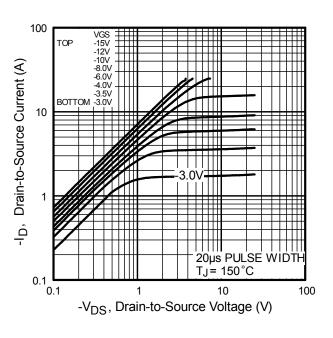
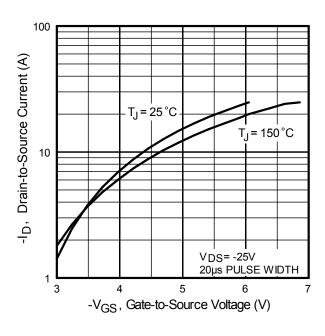
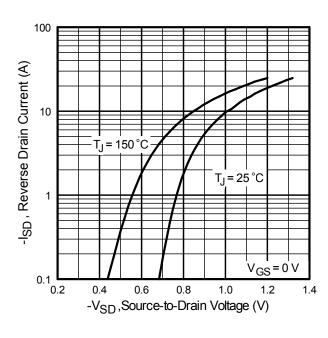
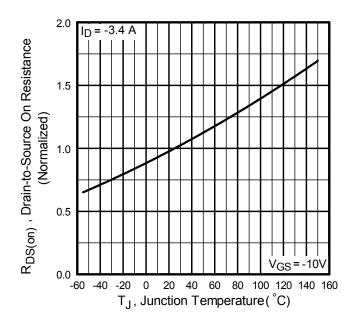


Fig. 2 Typical Output Characteristics

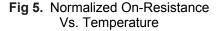

Fig. 3 Typical Transfer Characteristics

Fig. 4 Typical Source-Drain Diode Forward Voltage

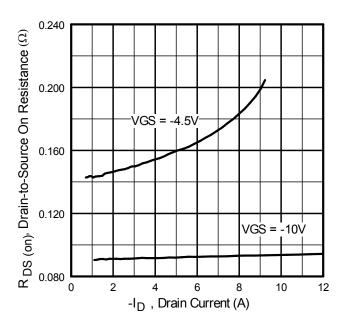


Fig 6. Typical On-Resistance Vs. Drain Current

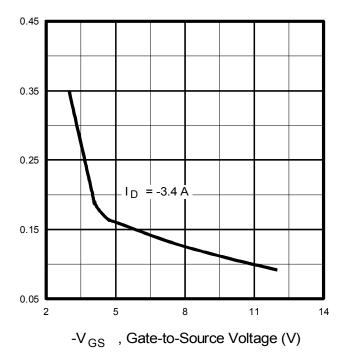


Fig. 7 Typical On-Resistance Vs. Gate Voltage

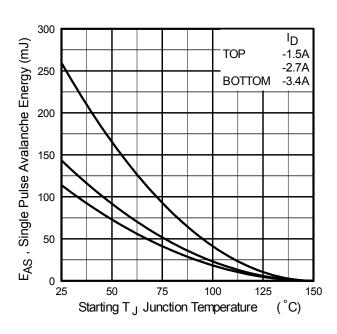
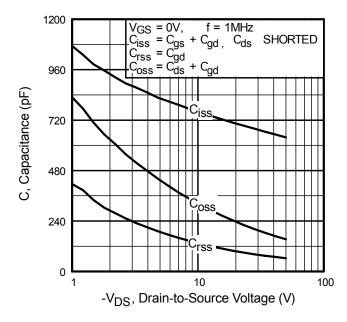
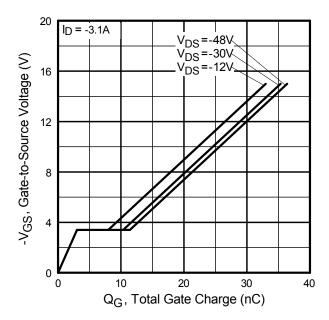
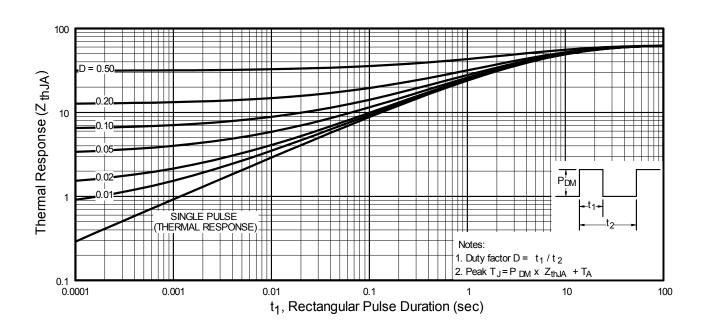
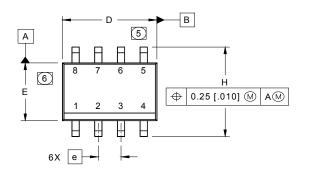




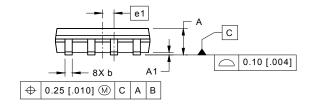
Fig 8. Maximum Avalanche Energy

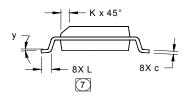
2016-5-26

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

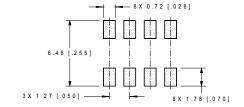
Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

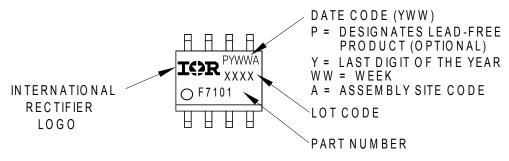




Fig. 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient



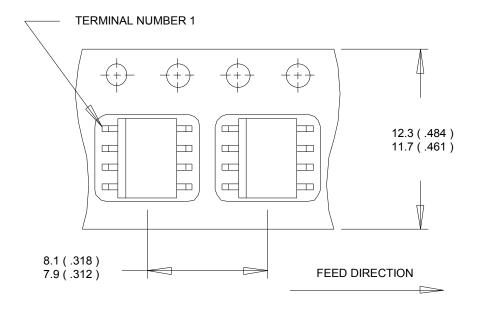
SO-8 Package Outline (Dimensions are shown in millimeters (inches)


DIM	INC	HES	MILLIM	ETERS	
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19 0.25		
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80 4.00		
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0° 8°		

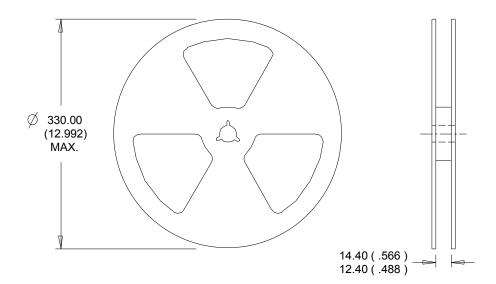

- 1. DIMENSIONING & TOLERANCING PERASME Y14.5M-1994
 2. CONTROLLING DIMENSION: MILLIMETER
 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.

 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- D IM EN SION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information


EXAMPLE: THIS IS AN IRF7101 (MOSFET)

Note: For the most current drawing please refer to Infineon's web site www.infineon.com



SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

Qualification Information[†]

Qualification Level	Consumer				
Moisture Sensitivity Level	SO-8	MSL1 (per JEDEC J-STD-020D) ^{††}			
RoHS Compliant		Yes			

- † Qualification standards can be found at Infineon's web site www.infineon.com
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments			
05/26/2016	Updated datasheet with corporate template			
Added disclaimer on last page.				

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.