

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

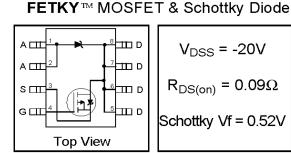
Contact us

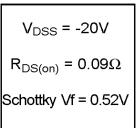
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

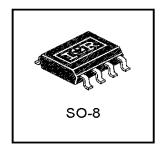
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International IOR Rectifier


IRF7422D2PbF


- Co-packaged HEXFET® Power MOSFET and Schottky Diode
- Ideal For Buck Regulator Applications
- P-Channel HEXFET
- Low V_F Schottky Rectifier
- Generation 5 Technology
- SO-8 Footprint
- Lead-Free


Description

The **FETKY**TM family of Co-packaged HEXFETs and Schottky diodes offer the designer an innovative board space saving solution for switching regulator and power management applications. Generation 5 HEXFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. Combinining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics. The SO-8 package is designed for vapor phase, infrared or wave soldering techniques.

Absolute Maximum Ratings

	Parameter	Maximum	Units	
I _D @ T _A = 25°C		-4.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.4	Α	
I _{DM}	Pulsed Drain Current ①	-33		
P _D @T _A = 25°C	Device Discinction	2.0	w	
P _D @T _A = 70°C	Power Dissipation	1.3	- 00	
	Linear Derating Factor	16	mW/°C	
V _{GS}	Gate-to-Source Voltage	± 12	V	
d∨/dt	Peak Diode Recovery dv/dt ②	-5.0	V/ns	
T _{J.} T _{STG}	Junction and Storage Temperature Range	-55 to +150	°C	

Thermal Resistance Ratings

Parameter		Maximum	Units
R _{0JA}	Junction-to-Ambient ④	62.5	°C/W

- ① Repetitive rating pulse width limited by max. junction temperature (see fig. 11)
- $\textcircled{2} \quad I_{SD} \leq -2.2A, \ di/dt \leq -50A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_{J} \leq 150^{\circ}C$
- ③ Pulse width ≤ 300 μ s duty cycle ≤ 2%
- 4 Surface mounted on FR-4 board, $t \leq 10 sec.$

IRF7422D2PbF

MOSFET Electrical Characteristics @ T_{.1} = 25°C (unless otherwise specified)

• • • • •	T = 100011001 Official dotter lotico (6)		20 0 (41.11.000			other moe opcomed,	
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			٧	$V_{GS} = 0V, I_{D} = -250\mu A$	
В	Static Drain-to-Source On-Resistance		0.07	0.09	Ω	V _{GS} = -4.5V, I _D = -2.2A ③	
R _{DS(on)}			0.115	0.14		$V_{GS} = -2.7V$, $I_D = -1.8A$ ③	
V _{GS(th)}	Gate Threshold Voltage	-0.70			V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	
g fs	Forward Transconductance	4.0			S	$V_{DS} = -16V$, $I_{D} = -2.2A$	
I _{DSS}	Drain-to-Source Leakage Current			-1.0	μA	$V_{DS} = -16V, V_{GS} = 0V$	
'USS	Brain to course Ecanage Carron			-25	μΑ	$V_{\rm DS}$ = -16V, $V_{\rm GS}$ = 0V, $T_{\rm J}$ = 125°C	
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V	
.622	Gate-to-Source Reverse Leakage			100	''^	V _{GS} = 12V	
Qg	Total Gate Charge		15	22		I _D = -2.2A	
Qgs	Gate-to-Source Charge		2.2	3.3	nC	V _{DS} = -16V	
Q _{gd}	Gate-to-Drain ("Miller") Charge		6.0	9.0		V_{GS} = -4.5V, See Fig. 6 and 9 ③	
t _{d(on)}	Turn-On Delay Time		8.4			V _{DD} = -10V	
tr	Rise Time		26		ns	I _□ = -2.2A	
t _{d(off)}	Turn-Off Delay Time		51		115	$R_G = 6.0\Omega$	
tf	Fall Time		33			R_D = 4.5 Ω , See Fig. 10 ③	
Ciss	Input Capacitance		610			V _{GS} = 0V	
Coss	Output Capacitance		310		pF	V _{DS} = -15V	
Crss	Reverse Transfer Capacitance		170			f = 1.0MHz, See Fig. 5	

MOSFET Source-Drain Ratings and Characteristics

Parameter		Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current(Body Diode)			-2.5		
I _{SM}	Pulsed Source Current (Body Diode)			-17	Α	
V _{SD}	Body Diode Forward Voltage			-1.0	٧	$T_J = 25$ °C, $I_S = -1.8A$, $V_{GS} = 0V$
t _{rr}	Reverse Recovery Time (Body Diode)		56	84	ns	$T_J = 25^{\circ}C$, $I_F = -2.2A$
Q _{rr}	Reverse RecoveryCharge		71	110	nC	di/dt = -100A/µs ③

Schottky Diode Maximum Ratings

	Parameter	Max.	Units	Conditions		
If (av)	Max. Average Forward Current	2.8			ave, Tc = 25°C	
		1.8	A	50% Duty Cycle. Rectangular Wave, Tc = 70°C		
I _{SM}	Max. peak one cycle Non-repetitive	200		5µs sine or 3µs Rect. pulse	Following any rated	
	Surge current	20	A	10ms sine or 6ms Rect. pulse	load condition &	
					with Vrrm applied	

Schottky Diode Electrical Specifications

	Parameter	Max.	Units	Conditions
Vfm	Max. Forward voltage drop	0.57		If = 3.0, Tj = 25°C
		0.77		If = 6.0, Tj = 25°C
		0.52	V	If = 3.0, Tj = 125°C
		0.79] [If = 6.0, Tj = 125°C .
Irm	Max. Reverse Leakage current	0.13	mA	Vr = 20V Tj = 25°C
		18	''''	Tj = 125°C
Ct	Max. Junction Capacitance	310	pF	Vr = 5Vdc (100kHz to 1 MHz) 25°C
dv/dt	Max. Voltage Rate of Charge	4900	V/µs	Rated Vr

(HEXFET is the reg. TM for International Rectifier Power MOSFET's)

Power Mosfet Characteristics

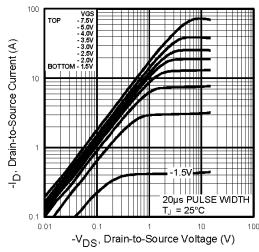


Fig 1. Typical Output Characteristics

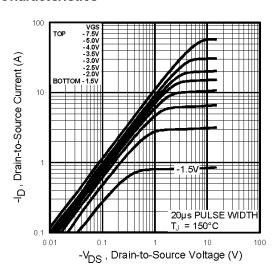


Fig 2. Typical Output Characteristics

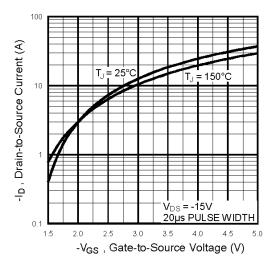
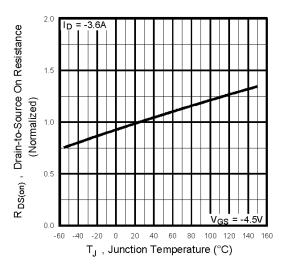
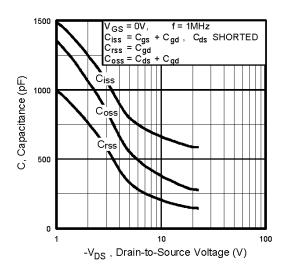




Fig 3. Typical Transfer Characteristics

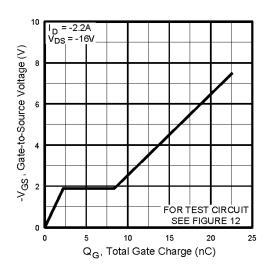


Fig 4. Normalized On-Resistance Vs. Temperature

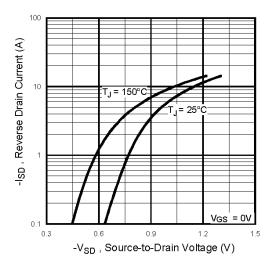

Power Mosfet Characteristics

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

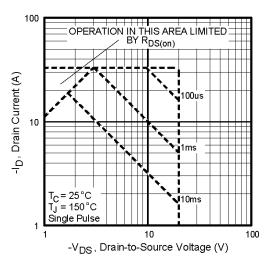
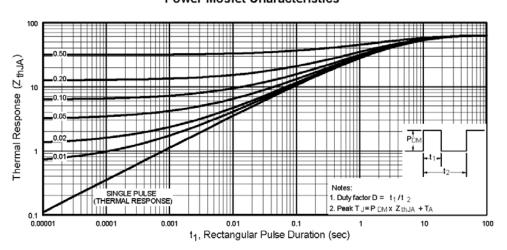
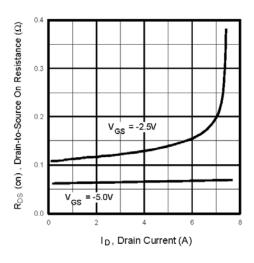




Fig 8. Maximum Safe Operating Area

Power Mosfet Characteristics

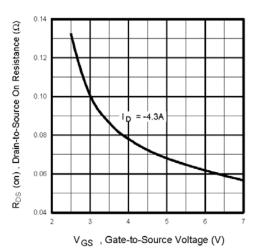


Fig 11. Typical On-Resistance Vs. Gate Voltage

Schottky Diode Characteristics

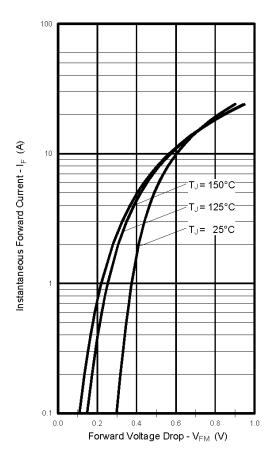


Fig. 12 - Typical Forward Voltage Drop Characteristics

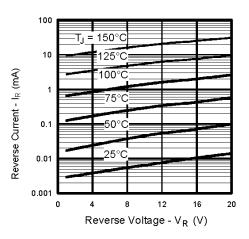
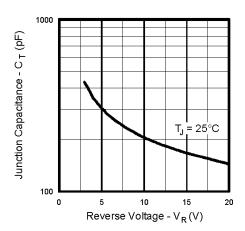
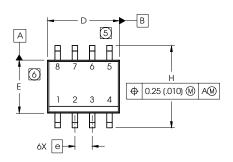
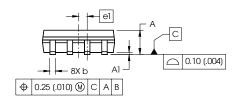
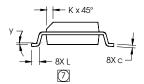


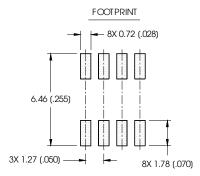
Fig. 13 - Typical Values of Reverse Current Vs. Reverse Voltage

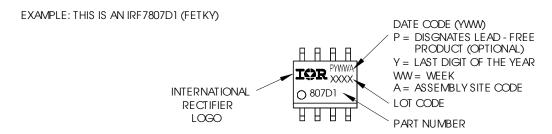




Fig.14 - Typical Junction Capacitance Vs. Reverse Voltage


IRF7422D2PbF

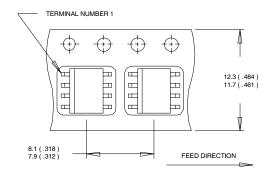
SO-8 (Fetky) Package Outline


DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
Al	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 BASIC		1.27 BASIC		
еl	.025 BASIC		0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	



NOTES

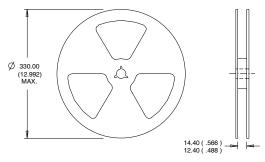
- 1. DIMENSIONING & TOLERANGING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.



SO-8 (Fetky) Part Marking Information

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)


NOTES:

- NOTES:

 1. CONTROLLING DIMENSION : MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/04