# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



PD - 95461

I<sub>D</sub>

15A

# International

# IRF7455PbF

### **SMPS MOSFET**

VDSS

30V

#### HEXFET<sup>®</sup> Power MOSFET

R<sub>DS(on)</sub> max

**0.0075**Ω

| Appl | ications |
|------|----------|
|------|----------|

High Frequency DC-DC Converters
with Synchronous Rectification

• Lead-Free

#### Benefits

- Ultra-Low R<sub>DS(on)</sub> at 4.5V V<sub>GS</sub>
- Low Charge and Low Gate Impedance to Reduce Switching Losses
- Fully Characterized Avalanche Voltage and Current

|          | 50550 |
|----------|-------|
| Top View | SO-8  |

#### Absolute Maximum Ratings

| Symbol Parameter                                                          |                                        | Max.         | Units |  |
|---------------------------------------------------------------------------|----------------------------------------|--------------|-------|--|
| V <sub>DS</sub>                                                           | Drain-Source Voltage                   | 30           | V     |  |
| V <sub>GS</sub>                                                           | Gate-to-Source Voltage                 | ± 12         | V     |  |
| $I_D @ T_A = 25^{\circ}C$ Continuous Drain Current, $V_{GS} @ 10V$        |                                        | 15           |       |  |
| $I_D @ T_A = 70^{\circ}C$ Continuous Drain Current, V <sub>GS</sub> @ 10V |                                        | 12           | A     |  |
| IDM Pulsed Drain Current①                                                 |                                        | 120          |       |  |
| P <sub>D</sub> @T <sub>A</sub> = 25°C Maximum Power Dissipation3          |                                        | 2.5          | W     |  |
| $P_D @T_A = 70^{\circ}C$                                                  | Maximum Power Dissipation3             | 1.6          | W     |  |
|                                                                           | Linear Derating Factor                 | 0.02         | W/°C  |  |
| T <sub>J</sub> , T <sub>STG</sub>                                         | Junction and Storage Temperature Range | -55 to + 150 | °C    |  |

#### **Thermal Resistance**

|                  | Parameter                   | Max. | Units |
|------------------|-----------------------------|------|-------|
| R <sub>0JA</sub> | Maximum Junction-to-Ambient | 50   | °C/W  |

#### Typical SMPS Topologies

• Telecom 48V Input Converters with Logic-Level Driven Synchronous Rectifiers

Notes ① through ④ are on page 8

|                                 | Parameter                            | Min. | Тур.   | Max.   | Units | Conditions                                        |
|---------------------------------|--------------------------------------|------|--------|--------|-------|---------------------------------------------------|
| V <sub>(BR)DSS</sub>            | Drain-to-Source Breakdown Voltage    | 30   |        | -      | V     | $V_{GS} = 0V, I_D = 250 \mu A$                    |
| $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient  |      | 0.029  |        | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA           |
|                                 | Static Drain-to-Source On-Resistance |      | 0.0060 | 0.0075 | Ω     | $V_{GS} = 10V, I_D = 15A$ ④                       |
| R <sub>DS(on)</sub>             |                                      |      | 0.0069 | 0.009  | 1 12  | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 12A ④    |
|                                 |                                      |      | 0.010  | 0.020  |       | $V_{GS} = 2.8V, I_D = 3.5A$ ④                     |
| V <sub>GS(th)</sub>             | Gate Threshold Voltage               | 0.6  |        | 2.0    | V     | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$             |
| lass                            | Drain-to-Source Leakage Current      |      |        | 20     | μA    | $V_{DS} = 24V, V_{GS} = 0V$                       |
| IDSS                            |                                      |      |        | 100    | PA    | $V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                | Gate-to-Source Forward Leakage       |      |        | 200    | nA    | $V_{GS} = 12V$                                    |
|                                 | Gate-to-Source Reverse Leakage       |      |        | -200   | nA    | V <sub>GS</sub> = -12V                            |

### Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

### Dynamic @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                     | Parameter                       | Min. | Тур. | Max. | Units | Conditions                  |
|---------------------|---------------------------------|------|------|------|-------|-----------------------------|
| g <sub>fs</sub>     | Forward Transconductance        | 44   |      |      | S     | $V_{DS} = 10V, I_{D} = 15A$ |
| Qg                  | Total Gate Charge               |      | 37   | 56   |       | I <sub>D</sub> = 15A        |
| Qgs                 | Gate-to-Source Charge           |      | 8.9  | 13   | nC    | $V_{DS} = 24V$              |
| Qgd                 | Gate-to-Drain ("Miller") Charge |      | 13   | 20   | t     | V <sub>GS</sub> = 5.0V, ③   |
| t <sub>d(on)</sub>  | Turn-On Delay Time              |      | 17   |      |       | $V_{DD} = 15V$              |
| tr                  | Rise Time                       |      | 18   |      | ns    | $I_{D} = 1.0A$              |
| t <sub>d(off)</sub> | Turn-Off Delay Time             |      | 51   | -    | 115   | $R_G = 6.0\Omega$           |
| tf                  | Fall Time                       |      | 44   |      | 1     | V <sub>GS</sub> = 4.5V ③    |
| Ciss                | Input Capacitance               |      | 3480 |      |       | $V_{GS} = 0V$               |
| Coss                | Output Capacitance              |      | 870  |      |       | $V_{DS} = 25V$              |
| Crss                | Reverse Transfer Capacitance    |      | 100  |      | pF    | f = 1.0MHz                  |

#### **Avalanche Characteristics**

|                 | Parameter                      | Тур. | Max. | Units |
|-----------------|--------------------------------|------|------|-------|
| E <sub>AS</sub> | Single Pulse Avalanche Energy@ |      | 200  | mJ    |
| I <sub>AR</sub> | Avalanche Current®             |      | 15   | A     |
| E <sub>AR</sub> | Repetitive Avalanche Energy®   |      | 0.25 | mJ    |

#### **Diode Characteristics**

|                 | Parameter                                 | Min. | Тур. | Max. | Units | Conditions                                                              |  |
|-----------------|-------------------------------------------|------|------|------|-------|-------------------------------------------------------------------------|--|
| Is              | Continuous Source Current<br>(Body Diode) | _    |      | 2.5  |       | MOSFET symbol<br>showing the<br>integral reverse<br>p-n junction diode. |  |
| I <sub>SM</sub> | Pulsed Source Current<br>(Body Diode) ①   | _    |      | 120  | A     |                                                                         |  |
| V <sub>SD</sub> | Diode Forward Voltage                     |      |      | 1.2  | V     | $T_J = 25^{\circ}C, I_S = 2.5A, V_{GS} = 0V$ 3                          |  |
| trr             | Reverse Recovery Time                     |      | 64   | 96   | ns    | $T_J = 25^{\circ}C, I_F = 2.5A$                                         |  |
| Qrr             | Reverse RecoveryCharge                    |      | 99   | 150  | nC    | di/dt = 100A/µs ③                                                       |  |

# International **tor** Rectifier



Fig 1. Typical Output Characteristics

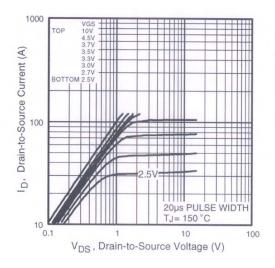



Fig 2. Typical Output Characteristics

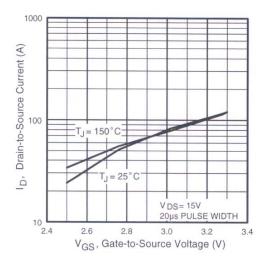



Fig 3. Typical Transfer Characteristics

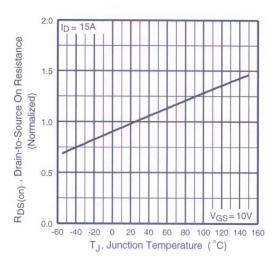
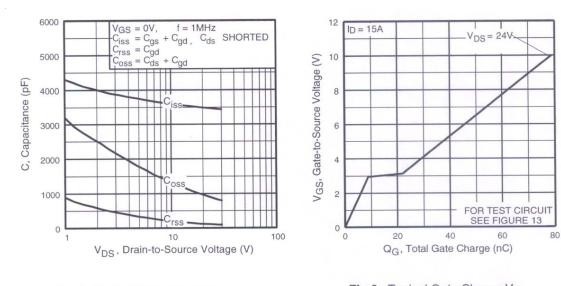




Fig 4. Normalized On-Resistance Vs. Temperature

# International





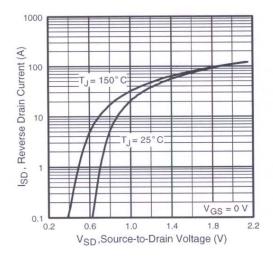





Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

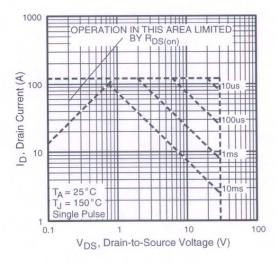
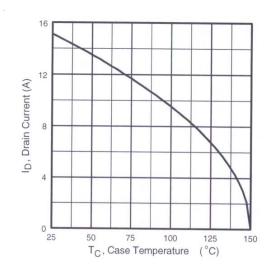




Fig 8. Maximum Safe Operating Area

# International **IGR** Rectifier





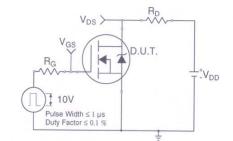



Fig 10a. Switching Time Test Circuit

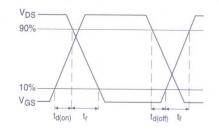



Fig 10b. Switching Time Waveforms

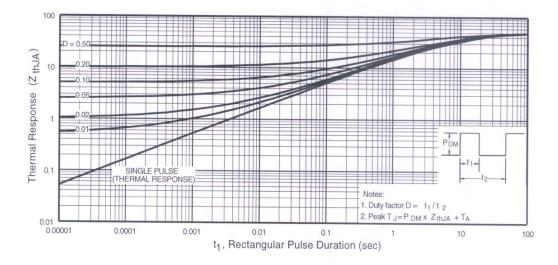
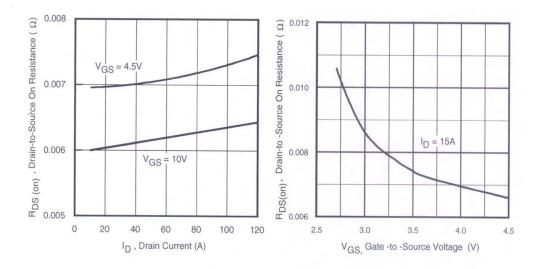
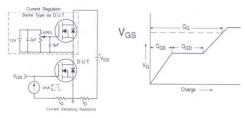





Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

# International **IOR** Rectifier



#### Fig 12. On-Resistance Vs. Drain Current



### Fig 13a&b. Basic Gate Charge Test Circuit and Waveform

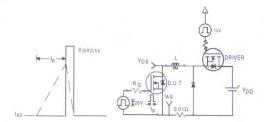



Fig 14a&b. Unclamped Inductive Test circuit and Waveforms

Fig 13. On-Resistance Vs. Gate Voltage

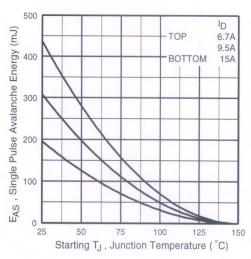
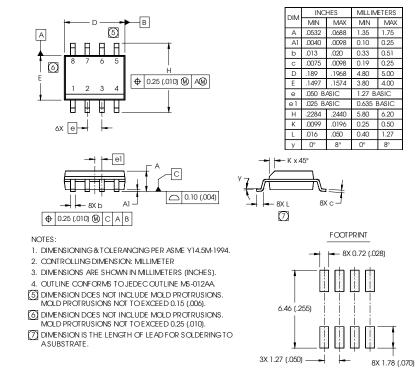
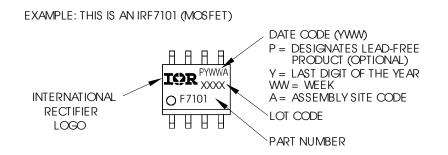



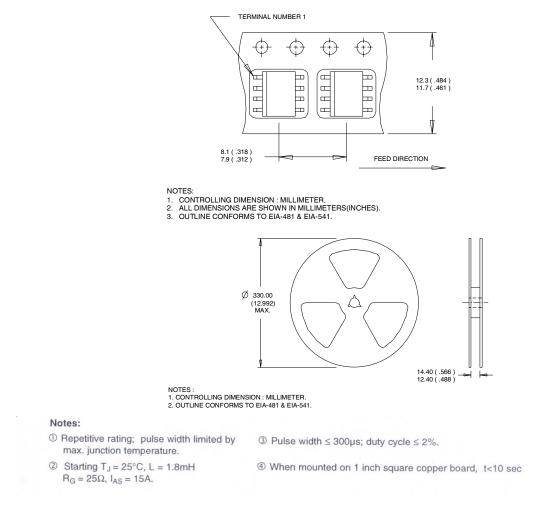

Fig 14c. Maximum Avalanche Energy Vs. Drain Current


# International

### SO-8 Package Outline

Dimensions are shown in milimeters (inches)




### SO-8 Part Marking Information (Lead-Free)



# International

### SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)



Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/04 8