

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

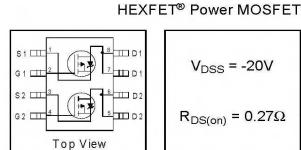
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

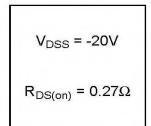
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

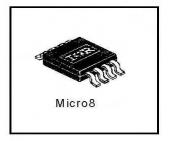
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


International IOR Rectifier


- Generation V Technology
- Ultra Low On-Resistance
- Dual P-Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- Available in Tape & Reel
- Fast Switching
- Lead-Free

Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The new Micro8 package, with half the footprint area of the standard SO-8, provides the smallest footprint available in an SOIC outline. This makes the Micro8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8 will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

IRF7504PbF

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-1.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-1.4	Α
Том	Pulsed Drain Current ①	-9.6	
P _D @T _A = 25°C	Power Dissipation	1.25	W
	Linear Derating Factor	10	mW/°C
V _{GS}	Gate-to-Source Voltage	± 12	٧
dv/dt	Peak Diode Recovery dv/dt ②	-5.0	V/ns
TJ,TSTG	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Typ.	Max.	Units
Reja	Maximum Junction-to-Ambient ⊕		100	°CM

All Micro8 Data Sheets reflect improved Thermal Resistance, Power and Current -Handling Ratings- effective only for product marked with Date Code 505 or later .

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20	8 -3-	2 -4-	٧	$V_{GS} = 0V$, $I_{D} = -250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		-0.012		V/°C	Reference to 25°C, I _D = -1mA
	Static Drain-to-Source On-Resistance	-	8-9-	0.27	Ω	V _{GS} = -4.5V, I _D = -1.2A ③
R _{DS(ON)}		-	1	0.40		V _{GS} = -2.7V, I _D = -0.60A ③
V _{GS(th)}	Gate Threshold Voltage	-0.70	S-3-		٧	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g fs	Forward Transconductance	1.3	0-4-	0 -0-	S	V _{DS} = -10V, I _D = -0.60A
	Drain-to-Source Leakage Current	-	8	-1.0	μA	V _{DS} = -16V, V _{GS} = 0V
DSS		_		-25		V _{DS} = -16V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage		·—	-100	nA	V _{GS} = -12V
	Gate-to-Source Reverse Leakage		_	100	шА	V _{GS} = +12V
Qg	Total Gate Charge	_	5.4	8.2		I _D = -1.2A
Qgs	Gate-to-Source Charge		0.96	1.4	nC	V _{DS} = -16V
Qgd	Gate-to-Drain ("Miller") Charge	_	2.4	3.6		V _{GS} = -4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		9.1	2-2-2		V _{DD} = -10V
tr	Rise Time		35	0 		I _D = -1.2A
t _{d(off)}	Turn-Off Delay Time	_	38		ns	$R_G = 6.0\Omega$
tf	Fall Time		43			R _D = 8.3Ω, See Fig. 10 ③
Ciss	Input Capacitance		240			V _{GS} = 0V
Coss	Output Capacitance		130		pF	V _{DS} = -15V
Crss	Reverse Transfer Capacitance		64			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)	_		-1.25	A	MOSFET symbol showing the
Ism	Pulsed Source Current (Body Diode) ①	-	-	-9.6		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -1.2A$, $V_{GS} = 0V$ ③
t _m	Reverse Recovery Time		52	78	ns	T _J = 25°C, I _F = -1.2A
Q _{rr}	Reverse RecoveryCharge		63	95	nC	di/dt = 100A/µs③
ton	Forward Turn-On Time	Intrinsic tum-on time is negligible (tum-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ③ Pulse width $\leq 300\mu s$; duty cycle $\leq 2\%$.
- $\begin{tabular}{l} @ I_{SD} \le -1.2A, \ di/dt \le 100A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ T_J \le 150 ^{\circ} C \end{tabular}$

International TOR Rectifier

IRF7504PbF

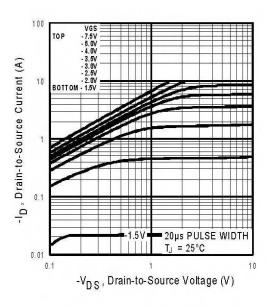


Fig 1. Typical Output Characteristics

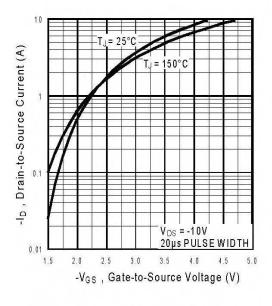


Fig 3. Typical Transfer Characteristics

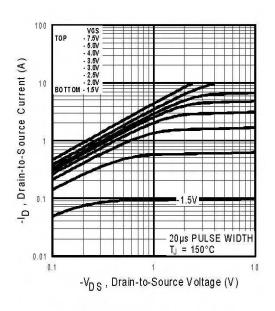


Fig 2. Typical Output Characteristics

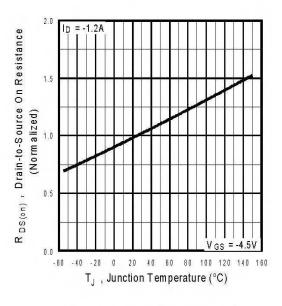
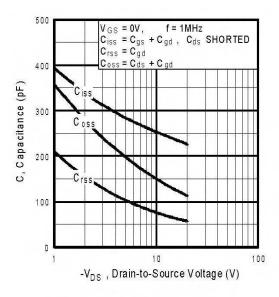
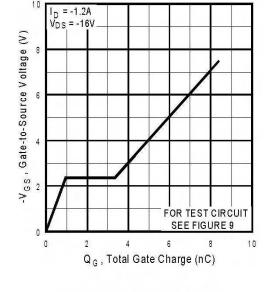




Fig 4. Normalized On-Resistance Vs. Temperature

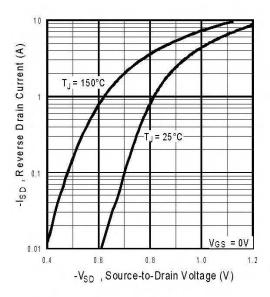

International Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

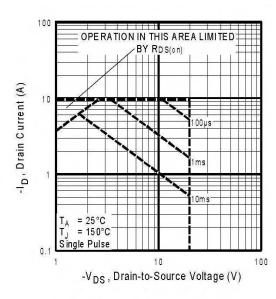
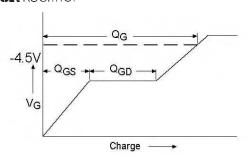



Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF7504PbF

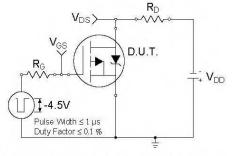
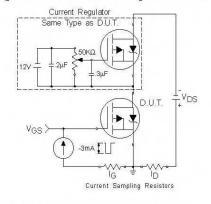



Fig 9a. Basic Gate Charge Waveform

Fig 10a. Switching Time Test Circuit

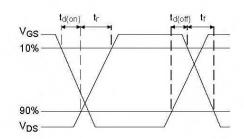
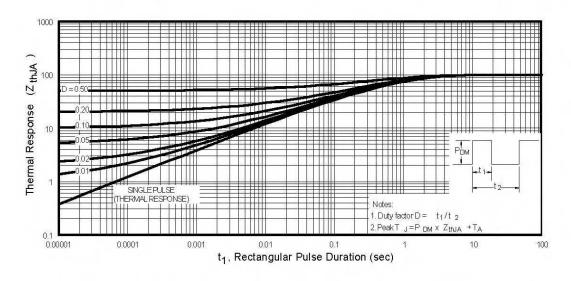
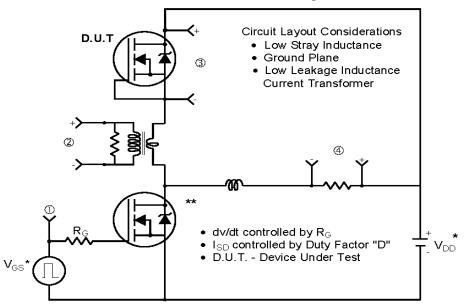



Fig 9b. Gate Charge Test Circuit


Fig 10b. Switching Time Waveforms

5

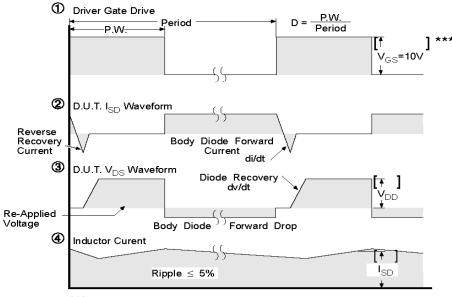
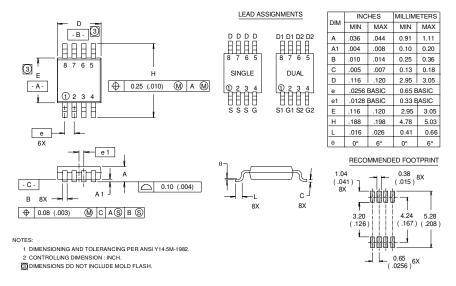


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com

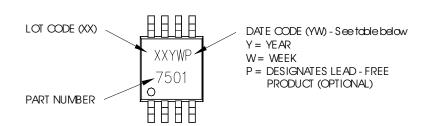
Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements



*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 12. For P-Channel HEXFETS


Micro8 Package Outline

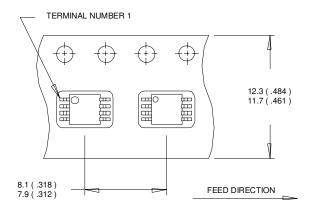
Dimensions are shown in milimeters (inches)

Micro8 Part Marking Information

EXAMPLE: THIS IS AN IRF7501

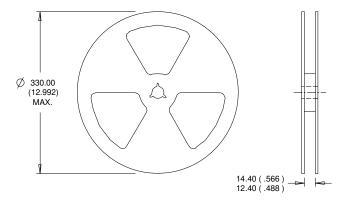
WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

WW = (27-52) IF PRECEDED BY ALETTER


YEAR	Υ	WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5	1	1
2006	6		
2007	7		
2008	8	1	1
2009	9	V	7
2010	0	24	Χ
		25	Υ
		26	Z

YEAR	Υ	WORK WEEK	W
2001 2002	A B	27 28	A B
2002	С	20 29	С
2004	D	30	D
2005 2006	E F		
2007	G		
2008	Н		1
2009 2010	J K	V 50	X
2010	IX	51	Y
		52	Z

International IOR Rectifier


Micro8 Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- OUTLINE CONFORMS TO EIA-481 & EIA-541.
 CONTROLLING DIMENSION: MILLIMETER.

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 02/05