

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

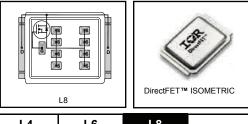
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DirectFET™ Power MOSFET②


Typical values (unless otherwise specified)

Applications RoHS Compliant, Halogen Free 2

- Lead-Free (Qualified up to 260°C Reflow) ①
- Ideal for High Performance Isolated Converter Primary Switch Socket
- Optimized for Synchronous Rectification
- Low Conduction Losses
- High Cdv/dt Immunity
- Low Profile (<0.7mm)
- **Dual Sided Cooling Compatible ①**
- Compatible with existing Surface Mount Techniques ①
- Industrial Qualified

Applicable DirectFET Outline and Substrate Outline ①

V _{DSS}	V _{GS}	R _{DS(on)}
100V min	±20V max	2.8mΩ @ 10V
Q _{g tot}	\mathbf{Q}_{gd}	$V_{gs(th)}$
200nC	110nC	

SB	SC		M2	M4	L4	L6	L8	
Description	on							

The IRF7769L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET[™] packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET™ package is compatible with existing layout geometries used in power applications. PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET™ package allows dual sided cooling to maximize thermal transfer in power systems.

The IRF7769L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance power converters.

Ordering Information

Dowt warmshow	Dealessa Tura	Standard P	ack	Note
Part number	Package Type	Form	Quantity	Note
IRF7769L1TRPbF	DirectFET Large Can	Tape and Reel	4000	"TR" suffix

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	100	
V_{GS}	Gate-to-Source Voltage	±20	V
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) @	124	
I_D @ T_C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) @	88	
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) [®]	20	Α
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited) @	375	
I _{DM}	Pulsed Drain Current®	500	
E _{AS}	Single Pulse Avalanche Energy ®	260	mJ
I _{AR}	Avalanche Current ©	74	Α

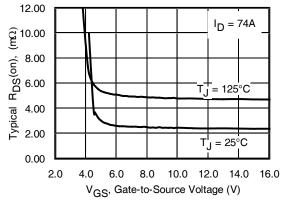


Fig 1. Typical On-Resistance vs. Gate Voltage Notes

- ① Click on this section to link to the appropriate technical paper.
- 2 Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

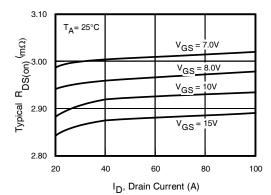


Fig 2. Typical On-Resistance vs. Drain Current

- TC measured with thermocouple mounted to top (Drain) of part.
- © Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25^{\circ}C$, L = 0.09mH, $R_G = 25\Omega$, $I_{AS} = 74A$.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 2mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.8	3.5	mΩ	V _{GS} = 10V, I _D = 74A
$V_{GS(th)}$	Gate Threshold Voltage	2.0	2.7	4.0	V	\/ -\/ -250uA
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Temp. Coefficient		-10		mV/°C	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
	Dualin to Course Leakens Commant			20		V _{DS} = 100 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
gfs	Forward Transconductance	410			S	$V_{DS} = 25V, I_{D} = 74A$
Q_g	Total Gate Charge		200	300		
Q _{gs1}	Pre- Vth Gate-to-Source Charge		30			V _{DS} = 50V
Q_{gs2}	Post– Vth Gate-to-Source Charge		9.0		nC	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		110	165		I _D = 74A
Q_{godr}	Gate Charge Overdrive		51			See Fig.9
Q _{sw}	Switch Charge (Q _{gs2 +} Q _{gd)}		119			
Q_{oss}	Output Charge		53		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.5		Ω	
$\mathbf{t}_{\sf d(on)}$	Turn-On Delay Time		44			$V_{DD} = 50V, V_{GS} = 10V$
t _r	Rise Time		32			I _D = 74A
$t_{d(off)}$	Turn-Off Delay Time		92		ns	$R_G = 1.8\Omega$
t _f	Fall Time		41			
C _{iss}	Input Capacitance		11560			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1240			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		590		pF	f = 1.0MHz
C _{oss}	Output Capacitance		6665			V_{GS} =0V, V_{DS} = 1.0V, f =1.0MHz
C _{oss}	Output Capacitance		690			V_{GS} =0V, V_{DS} = 80V, f =1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			124	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ⑤			500		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 74A, V_{GS} = 0V ?$
t _{rr}	Reverse Recovery Time		75	112	ns	$T_J = 25^{\circ}C_{I_F} = 74A, V_{DD} = 50V$
Q_{rr}	Reverse Recovery Charge		220	330	nC	di/dt = 100A/µs ⑦

2016-10-14

Notes: § Repetitive rating; pulse width limited by max. junction temperature. ? Pulse width $\le 400 \mu s$; duty cycle $\le 2\%$

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
$P_D @ T_C = 25^{\circ}C$	Power Dissipation ④	125	
$P_D @ T_C = 100 ° C$	Power Dissipation 63		W
$P_D @ T_A = 25^{\circ}C$	Power Dissipation ③	3.3	
T_P	Peak Soldering Temperature	270	
T_J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R_{qJA}	Junction-to-Ambient ③		45	
R_{qJA}	Junction-to-Ambient ®	12.5		
R_{qJA}	Junction-to-Ambient ®	20		°C/W
R_{qJC}	Junction-to-Can 4 ®		1.2	
R _{qJA-PCB}	Junction-to-PCB Mounted		0.4	

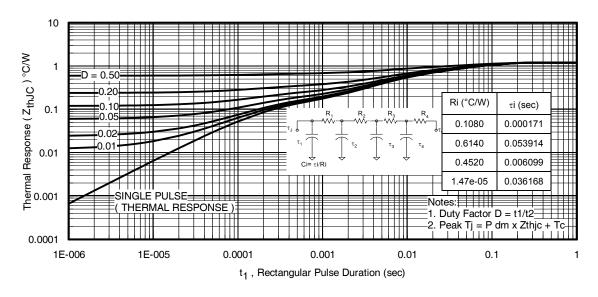


Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Notes:

- ③ Surface mounted on 1 in. square Cu board, steady state.
- ④ T_C measured with thermocouple incontact with top (Drain) of part.
- © Repetitive rating; pulse width limited by max. junction temperature.
- ® Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- 0 R₀ is measured at T_J of approximately 90°C.

③ Surface mounted on 1 in. square Cu board (still air).

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

2016-10-14

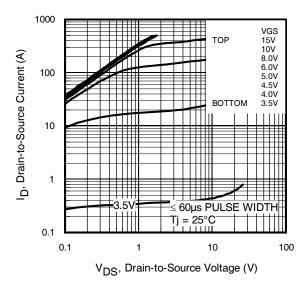


Fig 4. Typical Output Characteristics

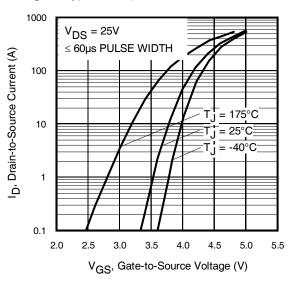


Fig 6. Typical Transfer Characteristics

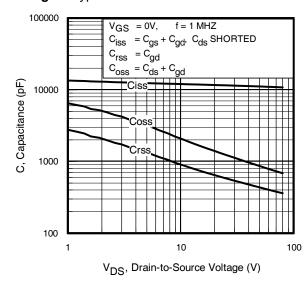


Fig 8. Typical Capacitance vs. Drain-to-Source Voltage

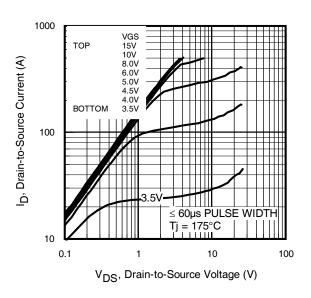


Fig 5. Typical Output Characteristics



Fig 7. Normalized On-Resistance vs. Temperature

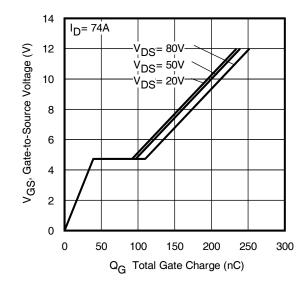
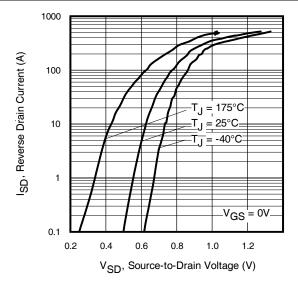



Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage

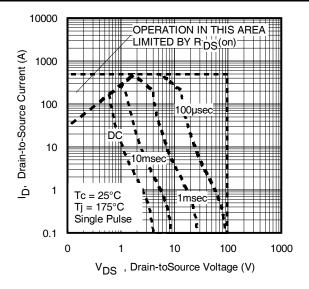


Fig 10. Typical Source-Drain Diode Forward Voltage

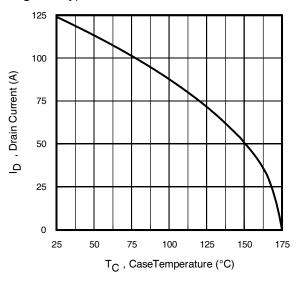


Fig 11. Maximum Safe Operating Area

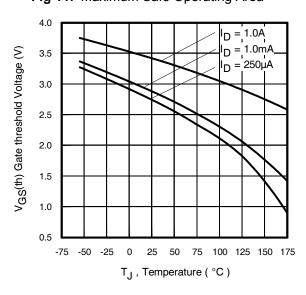


Fig 12. Maximum Drain Current vs. Case Temperature

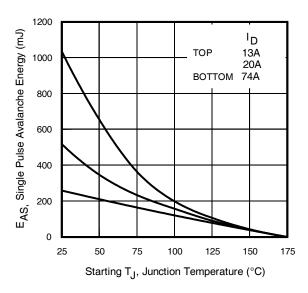


Fig 14. Maximum Avalanche Energy vs. Drain Current

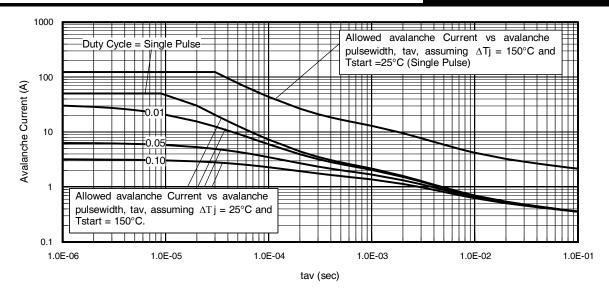
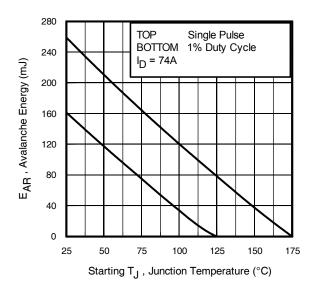



Fig 15. Typical Avalanche Current vs. Pulse width

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a
 temperature far in excess of T_{jmax}. This is validated for every
 part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ∆T = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 t_{av} = Average time in avalanche.
 D = Duty cycle in avalanche = tav ·f
 Z_{th,JC}(D, t_{av}) = Transient thermal resistance, see Figures 3)

PD (ave) = 1/2 (
$$1.3 \cdot BV \cdot I_{av}$$
) = $\Delta T/Z_{thJC}$
 $I_{av} = 2\Delta T/[1.3 \cdot BV \cdot Z_{th}]$
 $E_{AS\ (AR)} = P_{D\ (ave)} \cdot I_{av}$

Fig 16. Maximum Avalanche Energy vs. Temperature

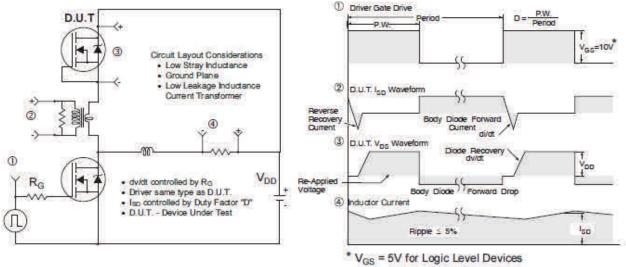


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

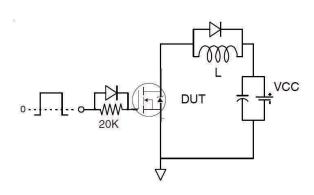


Fig 18a. Gate Charge Test Circuit

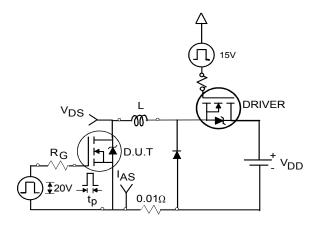


Fig 19a. Unclamped Inductive Test Circuit

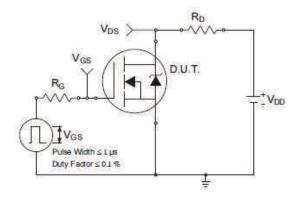


Fig 20a. Switching Time Test Circuit

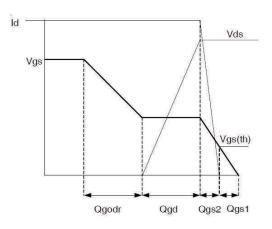


Fig 18b. Gate Charge Waveform

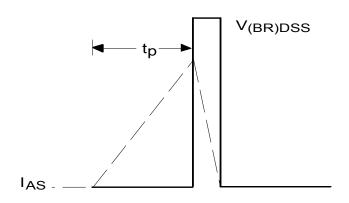


Fig 19b. Unclamped Inductive Waveforms

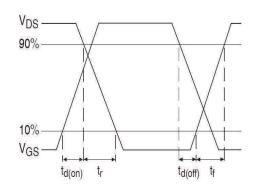
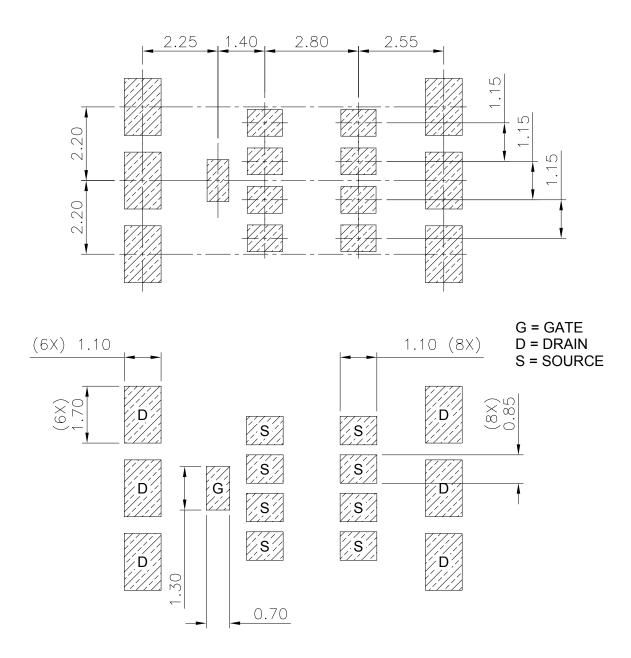
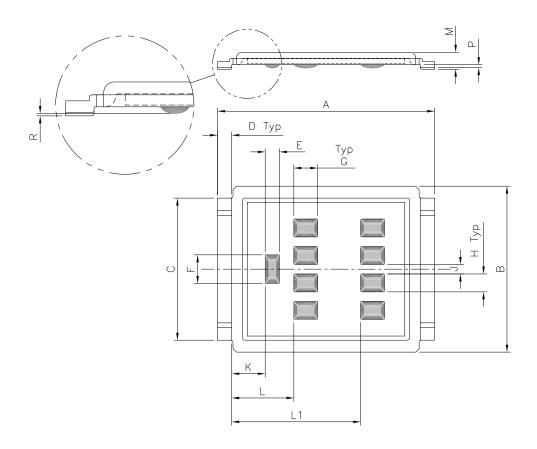



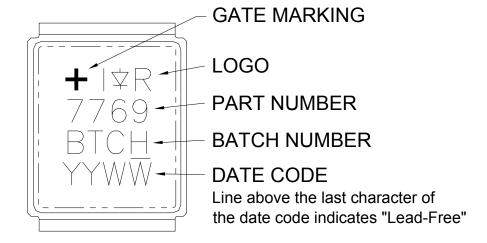
Fig 20b. Switching Time Waveforms

DirectFET™ Board Footprint, L8 Outline (Large Size Can, 8-Source Pads)

Please see DirectFETTM application note $\underline{\text{AN-}1035}$ for all details regarding the assembly of DirectFETTM. This includes all recommendations for stencil and substrate designs.

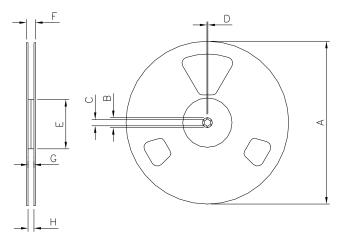


Note: For the most current drawing please refer to website at http://www.irf.com/package/

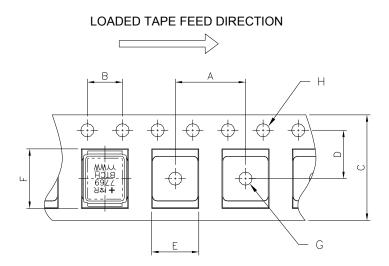

DirectFET® Outline Dimension, L8 Outline (Large Size Can, 8-Source Pads)

Please see DirectFET application note <u>AN-1035</u> for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DIMENSIONS							
	MET	RIC	IMPE	RIAL			
CODE	MIN	MAX	MIN	MAX			
Α	9.05	9.15	0.356	0.360			
В	6.85	7.10	0.270	0.280			
С	5.90	6.00	0.232	0.236			
D	0.55	0.65	0.022	0.026			
Е	0.58	0.62	0.023	0.024			
F	1.18	1.22	0.046	0.048			
G	0.98	1.02	0.039	0.040			
Н	0.73	0.77	0.029	0.030			
J	0.38	0.42	0.015	0.017			
K	1.35	1.45	0.053	0.057			
L	2.55	2.65	0.100	0.104			
L1	5.35	5.45	0.211	0.215			
М	0.68	0.74	0.027	0.029			
Р	0.09	0.17	0.003	0.007			
R	0.02	0.08	0.001	0.003			


DirectFET[™] Part Marking

Note: For the most current drawing please refer to website at http://www.irf.com/package/



DirectFET[™] Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF7769L1TRPBF).

REEL DIMENSIONS					
ST	ANDARD	OPTION	(QTY 400	00)	
	MET	RIC	IMPE	RIAL	
CODE	MIN	MAX	MIN	MAX	
Α	330.00	N.C	12.992	N.C	
В	20.20	N.C	0.795	N.C	
С	12.80	13.20	0.504	0.520	
D	1.50	N.C	0.059	N.C	
E	99.00	100.00	3.900	3.940	
F	N.C	22.40	N.C	0.880	
G	16.40	18.40	0.650	0.720	
Н	15.90	19.40	0.630	0.760	

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS						
	MET	RIC	IMPE	RIAL		
CODE	MIN	MAX	MIN	MAX		
Α	11.90	12.10	4.69	0.476		
В	3.90	4.10	0.154	0.161		
С	15.90	16.30	0.623	0.642		
D	7.40	7.60	0.291	0.299		
Е	7.20	7.40	0.283	0.291		
F	9.90	10.10	0.390	0.398		
G	1.50	N.C	0.059	N.C		
Н	1.50	1.60	0.059	0.063		

Note: For the most current drawing please refer to website at http://www.irf.com/package/

Qualification Information

Qualification Level	Industrial * (per JEDEC JESD47F [†] guidelines)		
Moisture Sensitivity Level	DirectFET (Large -Can)	MSL1 (per JEDEC J-STD-020D ^{†)}	
RoHS Compliant	Yes		

- † Applicable version of JEDEC standard at the time of product release.
- * Industrial qualification standards except autoclave test conditions.

Revision History

Date		Comments
2/13/2013	•	TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document
	•	Changed datasheet with "Infineon" logo –all pages.
10/14/2016	•	Corrected Outline Dimension, L8 Outline on page 9.
	•	Added disclaimer on last page.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.