imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRFHM8326PbF

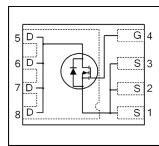
HEXFET[®] Power MOSFET

30	V	
±20	v	
4.7	mΩ	
6.7		
20	nC	
706	Α	
	±20 4.7 6.7 20	

Applications

- Charge and Discharge Switch for Notebook PC Battery Application
- System/Load Switch
- Synchronous MOSFET for Buck Converters

Foaturos

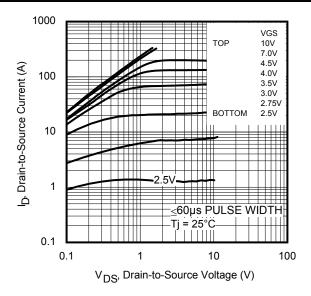

_	Benefits
	Enable better thermal dissipation
	Increased Power Density
results in	Multi-Vendor Compatibility
\Rightarrow	Easier Manufacturing
	Environmentally Friendlier
	Increased Reliability
_	results in ⇒

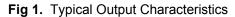
ſ	Bass nort number	number Package Type Standard Form		ack	Ordershie Bart Number
	Base part number			Quantity	Orderable Part Number
	IRFHM8326PbF	PQFN 3.3 mm x 3.3 mm	Tape and Reel	4000	IRFHM8326TRPbF

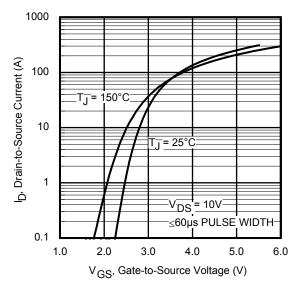
Absolute Maximum Ratings

	Parameter	Max.	Units
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	19	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	15	
$I_D \oslash T_{C(Bottom)} = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	70⑥	
$I_D \textcircled{O} T_{C(Bottom)} = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	446	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Source Bonding Technology Limited)	25⑦	
I _{DM}	Pulsed Drain Current ①	278	
P _D @T _A = 25°C	Power Dissipation (5)	2.8	
$P_D @T_{C(Bottom)} = 25^{\circ}C$ Power Dissipation (5)		37	- W
	Linear Derating Factor	0.023	W/°C
TJ	Operating Junction and	-55 to + 150	°0
T _{STG}	Storage Temperature Range		°C

Notes ${\rm \textcircled{O}}$ through ${\rm \textcircled{O}}$ are on page 9






Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditi	ons
BV _{DSS}	Drain-to-Source Breakdown Voltage	30				$V_{GS} = 0V, I_D = 250$	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		22			Reference to 25°C	
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.8	4.7		V _{GS} = 10V, I _D = 20A	
20(01)			5.2	6.7	mΩ	$V_{GS} = 4.5V, I_D = 20$	
V _{GS(th)}	Gate Threshold Voltage	1.2	1.7	2.2	V		
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-10		mV/°C	$V_{DS} = V_{GS}, I_D = 50\mu$	A
I _{DSS}	Drain-to-Source Leakage Current			1.0		V _{DS} = 24V, V _{GS} = 0	V
				150	μA	$V_{DS} = 24V, V_{GS} = 0$	
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V	· -
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V	
gfs	Forward Transconductance	70			S	V _{DS} = 10V, I _D = 20A	4
Q _g	Total Gate Charge		39		nC	V _{GS} = 10V, V _{DS} = 1	5V, I _D = 20A
Q _g	Total Gate Charge		20	30			
Q _{gs1}	Pre-Vth Gate-to-Source Charge		4.8			V _{DS} = 15V	
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.6		nC	V _{GS} = 4.5V	
Q_{gd}	Gate-to-Drain Charge		6.5			I _D = 20A	
Q _{godr}	Gate Charge Overdrive		6.1				
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		9.1				
Q _{oss}	Output Charge		11		nC	V _{DS} = 16V, V _{GS} = 0	V
R _G	Gate Resistance		1.9		Ω		
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 15V, V _{GS} = 4	.5V
t _r	Rise Time		35		ns	I _D = 20A	
t _{d(off)}	Turn-Off Delay Time		18			R _G =1.8Ω	
t _f	Fall Time		12				
C _{iss}	Input Capacitance		2496			V _{GS} = 0V	
C _{oss}	Output Capacitance		524		pF	V _{DS} = 10V	
C _{rss}	Reverse Transfer Capacitance		273			f = 1.0MHz	
Avalanche Ch	naracteristics						
	Parameter			Тур.		Max	
E _{AS}	Single Pulse Avalanche Energy ②					58	
I _{AR}	Avalanche Current ①					20	
Diode Charac	teristics			-			
	Parameter	Min.	Тур.	Max.	Units	Conditi	ons
ls	Continuous Source Current			25⑦		MOSFET symbol	
	(Body Diode)			250	A	showing the	_(i→ 本)
I _{SM}	Pulsed Source Current			278		integral reverse	
	(Body Diode) ①					p-n junction diode.	S
V _{SD}	Diode Forward Voltage			1.0	V	T _J = 25°C, I _S = 20A	
t _{rr}	Reverse Recovery Time		15	23	ns	T _J = 25°C, I _F = 20A	., V _{DD} = 15V
Q _{rr}	Reverse Recovery Charge		14	21	nC	di/dt = 300A/µs ③	
Thermal Resi	stance						
	Parameter				Тур.	Max.	Units
R _{0JC} (Bottom)	Junction-to-Case ④			1		3.4	
$R_{\theta JC}$ (Top)	Junction-to-Case ④				41	°C/W	
$R_{\theta JA}$	Junction-to-Ambient ©			+		44	
R _{θJA} (<10s)	Junction-to-Ambient (5)			_		31	
$r_{\theta JA}$ (> 105)				1		51	

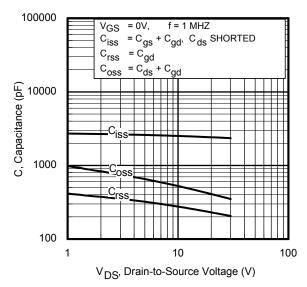


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

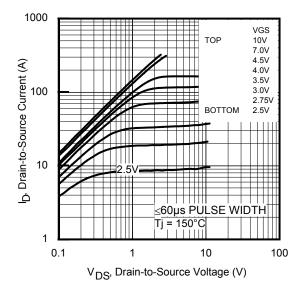


Fig 2. Typical Output Characteristics

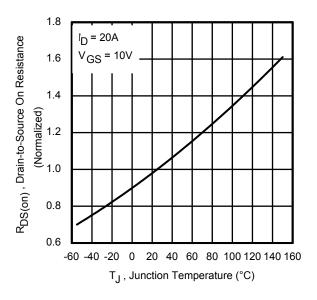


Fig 4. Normalized On-Resistance vs. Temperature

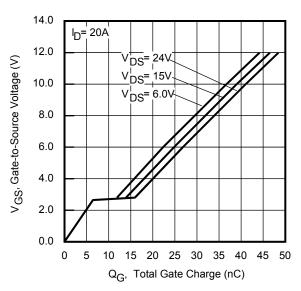
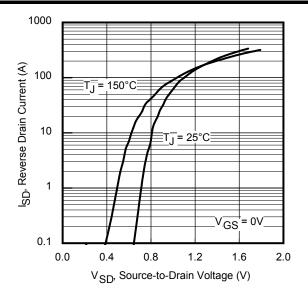
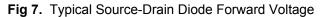




Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

IRFHM8326PbF

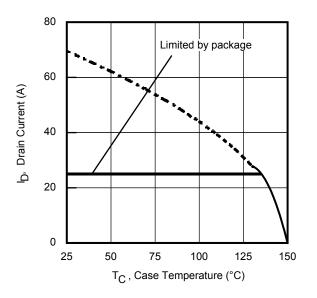


Fig 9. Maximum Drain Current vs. Case Temperature

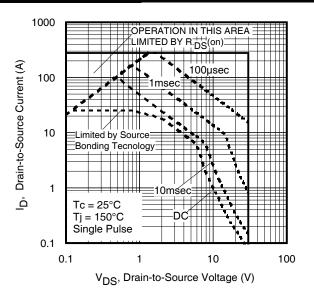


Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

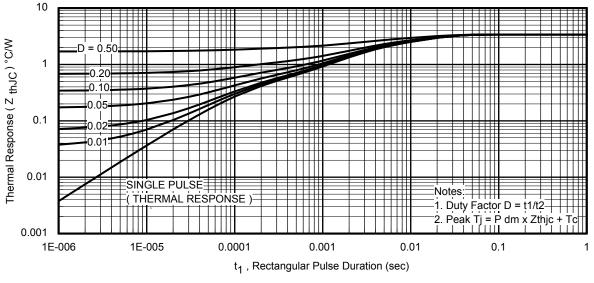


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFHM8326PbF

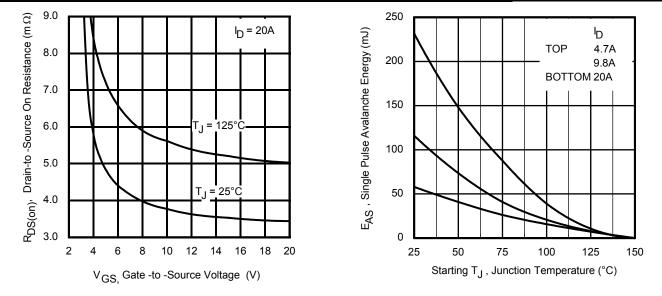


Fig 12. On- Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

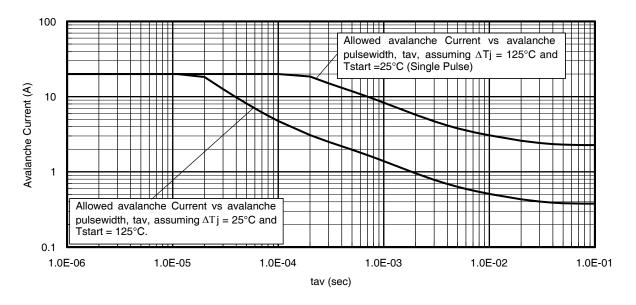
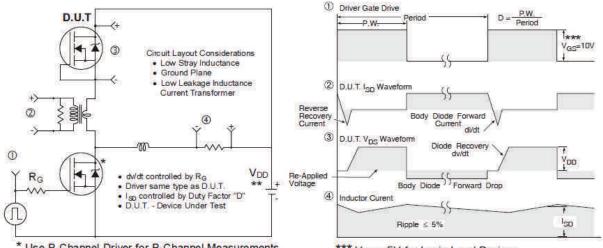
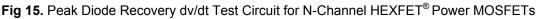



Fig 14. Typical Avalanche Current vs. Pulsewidth


infineon

IRFHM8326PbF

* Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel

*** V_{GS} = 5V for Logic Level Devices

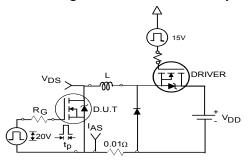


Fig 16a. Unclamped Inductive Test Circuit

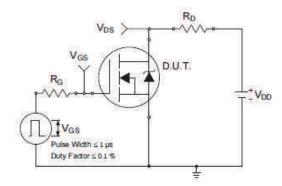


Fig 17a. Switching Time Test Circuit

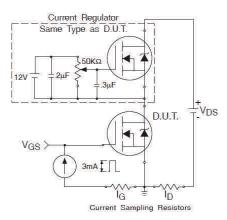


Fig 18a. Gate Charge Test Circuit

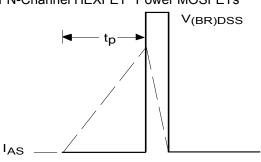


Fig 16b. Unclamped Inductive Waveforms

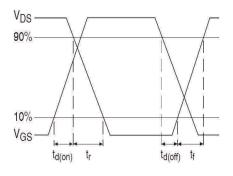
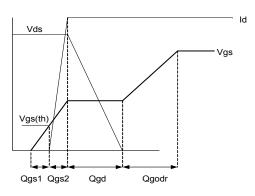
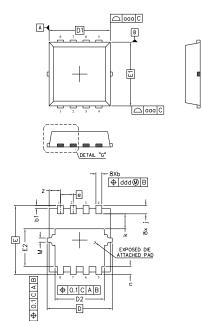
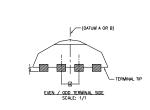
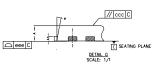
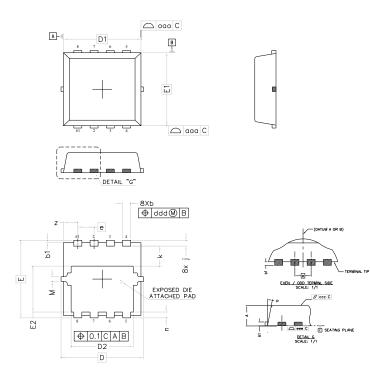


Fig 17b. Switching Time Waveforms


Fig 18b. Gate Charge Waveform

PQFN 3.3 x 3.3 Outline "C" Package Details

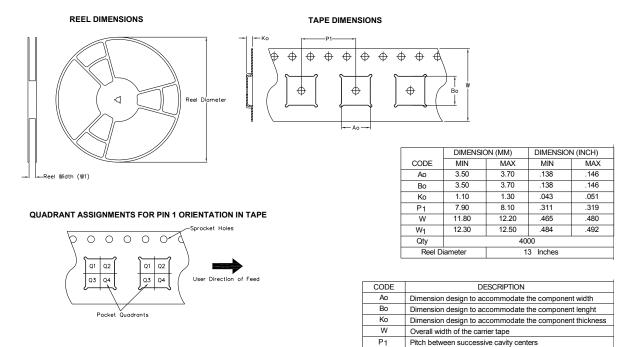


	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
А	0.70	0.80	.0276	.0315	
A1	0.10	0.25	.0039	.0098	
b	0.25	0.35	.0098	.0138	
ь1	0.05	0.15	.0020	.0059	
D	3.20	3.40	.1260	.1339	
D1	3.00	3.20	.1181	.1260	
D2	2.39	2.59	.0941	.1020	
E	3.25	3.45	.1280	.1358	
E1	3.00	3.20	.1181	.1260	
E2	1.78	1.98	.0701	.0780	
е	0.65 BSC		.0255 BSC		
j	0.30	0.50	.0118	.0197	
k	0.59	0.79	.0232	.0311	
n	0.30	0.50	.0118	.0197	
м	0.03	0.23	.0012	.0091	
P	1 0°	12°	1 O°	1 2°	
z	0.50	0.70	.0197	.0276	

PQFN 3.3 x 3.3 Outline "G" Package Details

	MILLIN	IETERS	INCH	IES	
DIM	MIN MAX		MIN	MAX	
А	0.80	0.90	.0315	.0354	
A1	0.12	0.22	.0047	.0086	
Ь	0.22	0.42	.0087	.0165	
b1	0.05	0.15	.0020	.0059	
D	3.30	BSC	.1299 BSC		
D1	3.10	BSC	.1220 BSC		
D2	2.29	2.69	.0902	.1059	
E	3.30 BSC		.1299 BSC		
E1	3.10 BSC		.1220 BSC		
E2	1.85	2.05	.0728	.0807	
е	0.65	BSC	.0255 BSC		
j	0.15	0.35	.0059	.0137	
k	0.75	0.95	.0295	.0374	
n	0.15	0.35	.0059	.0137	
м	NOM.	0.20	NOM.	.0078	
P	9°	11°	9°	1 1°	

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: <u>http://www.irf.com/technical-info/appnotes/an-1136.pdf</u>


For more information on package inspection techniques, please refer to application note AN-1154: <u>http://www.irf.com/technical-info/appnotes/an-1154.pdf</u>

PQFN 3.3mm x 3.3mm Outline Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 3.3mm x 3.3mm Outline Tape and Reel

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Consumer ^{††} (per JEDEC JESD47F ^{†††} guidelines)		
Moisture Sensitivity Level	PQFN 3.3mm x 3.3mm	MSL1 (per JEDEC J-STD-020D ^{†††})	
RoHS Compliant	Yes		

- + Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/product-info/reliability</u>
- ++ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: <u>http://www.irf.com/whoto-call/salesrep/</u>
- +++ Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- @ Starting T_J = 25°C, L = 0.29mH, R_G = 50\Omega, I_{AS} = 20A.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- ④ R_{θ} is measured at T_{J} of approximately 90°C.
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- © Calculated continuous current based on maximum allowable junction temperature.
- ⑦ Current is limited to 25A by source bonding technology.

Revision History

Date	Comments
6/6/2014	 Updated schematic on page 1 Updated package outline and part marking on page 7 Updated tape and reel on page 8
6/30/2014	Remove "SAWN" package outline on page 7.
2/23/2016	 Updated datasheet with corporate template Updated package outline to reflect the PCN # (241-PCN30-Public) for "Option C" and "Option G" on page 7.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.