

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

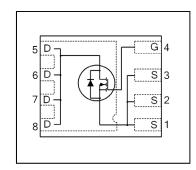
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



IRFHM8342TRPbF

HEXFET® Power MOSFET

V _{DSS}	30	V
$R_{DS(on)}$ max (@ V_{GS} = 10V)	16	mΩ
(@ V _{GS} = 4.5V)	25	
Qg (typical)	5.0	nC
I _D (@T _{C (Bottom)} = 25°C)	20⑦	A

Applications

- Control MOSFET for synchronous buck converter
- Load Switch

Features

Lava Obanna (fraisal 5.0 a.O.)	
Low Charge (typical 5.2 nC)	
Low Thermal Resistance to PCB (<6.2°C/W)	
Low Profile (<0.9 mm)	esults in
Industry-Standard Pinout	\Rightarrow
Compatible with Existing Surface Mount Techniques	
RoHS Compliant, Halogen-Free	
MSL1, Consumer Qualification	

Benefits

	Low Switching Losses				
	Enable better Thermal Dissipation				
n	Increased Power Density				
	Multi-Vendor Compatibility				
	Easier Manufacturing				
	Environmentally Friendlier				
	Increased Reliability				

Daga mant number	Deakers Ture	Standard Pack		Oudenable Deut Neumber
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRFHM8342PbF	PQFN 3.3mm x 3.3mm	Tape and Reel	4000	IRFHM8342TRPbF

Absolute Maximum Ratings

Parameter		Max.	Units
V_{GS}	Gate-to-Source Voltage		V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	10	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	286⑦	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	18©	A
I _D @ T _C = 25°C Continuous Drain Current, V _{GS} @ 10V (Source Bonding Technology Limited)		20⑦	
I _{DM}	Pulsed Drain Current ①	112	
P _D @T _A = 25°C	Power Dissipation ®	2.6	107
$P_D @ T_{C(Bottom)} = 25^{\circ}C$ Power Dissipation		20	W
	Linear Derating Factor	0.020	W/°C
T_J	Operating Junction and	-55 to + 150	00
T_{STG}	Storage Temperature Range		°C

Notes 1 through 2 are on page 10

2016-2-23

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		20		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		13	16	m()	$V_{GS} = 10V, I_D = 17A \ 3$
			20	25	mΩ	$V_{GS} = 4.5V, I_D = 14A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.8	2.35	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.2		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
I_{GSS}	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
gfs	Forward Transconductance	19			S	$V_{DS} = 10V, I_{D} = 17A$
Q_g	Total Gate Charge		10		nC	$V_{GS} = 10V, V_{DS} = 15V, I_D = 17A$
Q_g	Total Gate Charge		5.0	7.5		V _{DS} = 15V
Q_gs	Pre-Vth Gate-to-Source Charge		1.8		nC	V _{GS} = 4.5V
$Q_{\sf gd}$	Gate-to-Drain Charge		1.7			I _D = 17A
Q_{godr}	Gate Charge Overdrive		1.5			
Q _{oss}	Output Charge		3.3		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		2.6		Ω	
$t_{d(on)}$	Turn-On Delay Time		8.1			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		30		ns	I _D = 17A
$t_{d(off)}$	Turn-Off Delay Time		7.6			$R_G=1.8\Omega$
t _f	Fall Time		5.6			
C _{iss}	Input Capacitance		560			$V_{GS} = 0V$
C _{oss}	Output Capacitance		102		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		48			f = 1.0 MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		21	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			20@		MOSFET symbol
	(Body Diode)			20⑦	_	showing the
I _{SM}	Pulsed Source Current			110	A	integral reverse
	(Body Diode) ①			112		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 17A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		9.4	14	ns	$T_J = 25^{\circ}C$, $I_F = 17A$, $V_{DD} = 15V$
Q_{rr}	Reverse Recovery Charge		5.8	8.7	nC	di/dt = 330A/µs ③

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (Bottom)	Junction-to-Case ④		6.2	
R _{θJC} (Top)	Junction-to-Case ④		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient ©		49	
R _{θJA} (<10s)	Junction-to-Ambient ©		34	

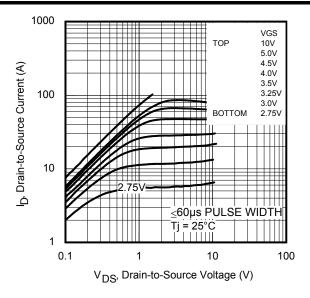


Fig 1. Typical Output Characteristics

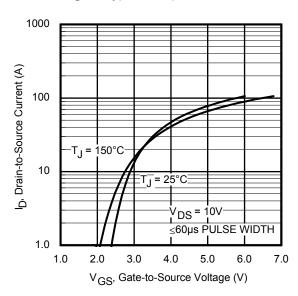


Fig 3. Typical Transfer Characteristics

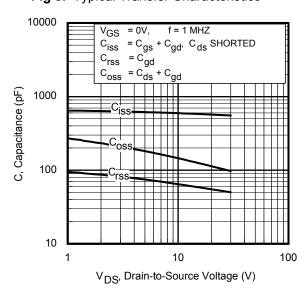


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

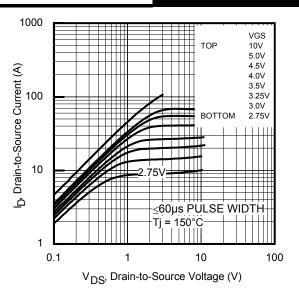


Fig 2. Typical Output Characteristics

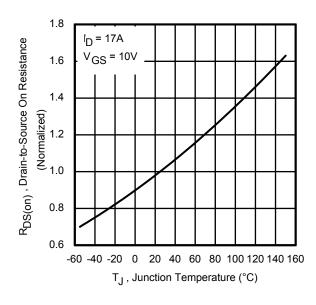


Fig 4. Normalized On-Resistance vs. Temperature

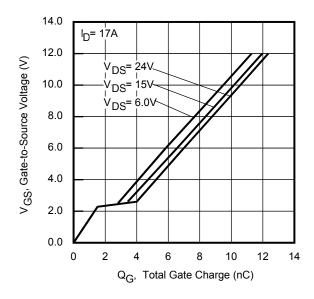


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

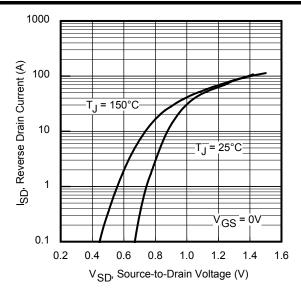


Fig 7. Typical Source-Drain Diode Forward Voltage

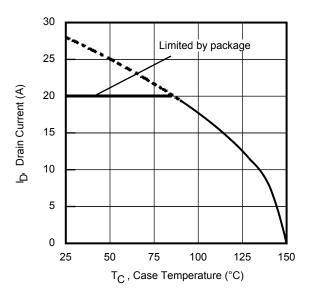


Fig 9. Maximum Drain Current vs. Case Temperature

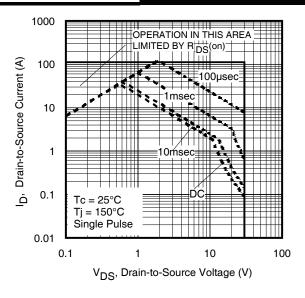


Fig 8. Maximum Safe Operating Area

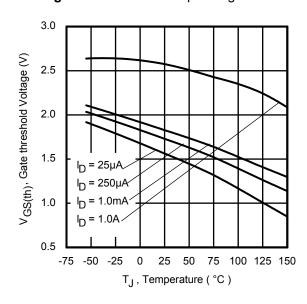


Fig 10. Drain-to-Source Breakdown Voltage

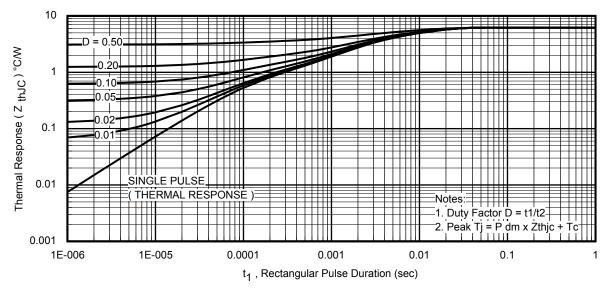


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

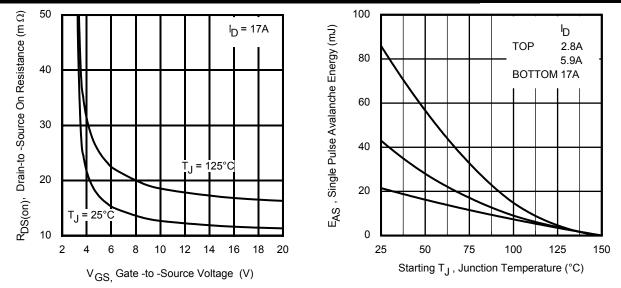


Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

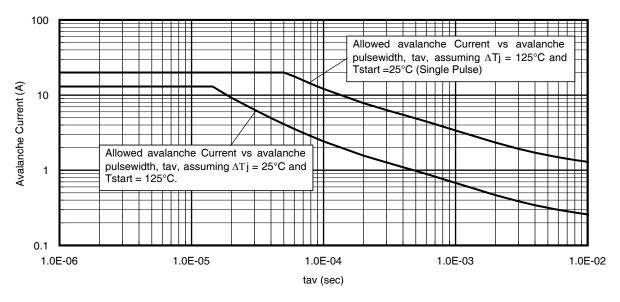


Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width

2016-2-23

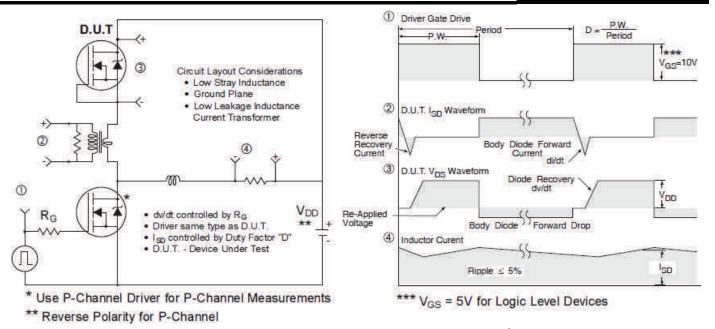


Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

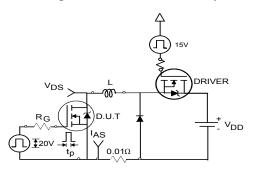


Fig 16a. Unclamped Inductive Test Circuit

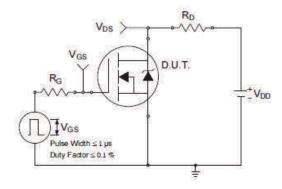


Fig 17a. Switching Time Test Circuit

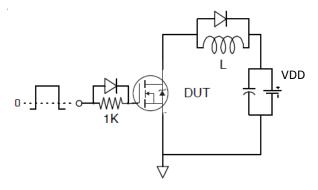


Fig 18. Gate Charge Test Circuit

6

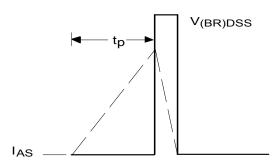


Fig 16b. Unclamped Inductive Waveforms

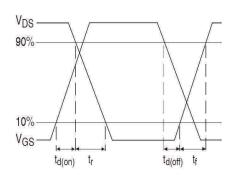


Fig 17b. Switching Time Waveforms

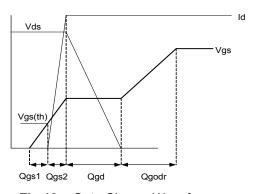


Fig 19. Gate Charge Waveform

Placement and Layout Guidelines

The typical application topology for this product is the synchronous buck converter. These converters operate at high frequencies (typically around 400 kHz). During turn-on and turn-off switching cycles, the high di/dt currents circulating in the parasitic elements of the circuit induce high voltage ringing which may exceed the device rating and lead to undesirable effects. One of the major contributors to the increase in parasitics is the PCB power circuit inductance.

This section introduces a simple guideline that mitigates the effect of these parasitics on the performance of the circuit and provides reliable operation of the devices.

To reduce high frequency switching noise and the effects of Electromagnetic Interference (EMI) when the control MOSFET (Q1) is turned on, the layout shown in Figure 20 is recommended. The input bypass capacitors, control MOSFET and output capacitors are placed in a tight loop to minimize parasitic inductance which in turn lowers the amplitude of the switch node ringing, and minimizes exposure of the MOSFETs to repetitive avalanche conditions.

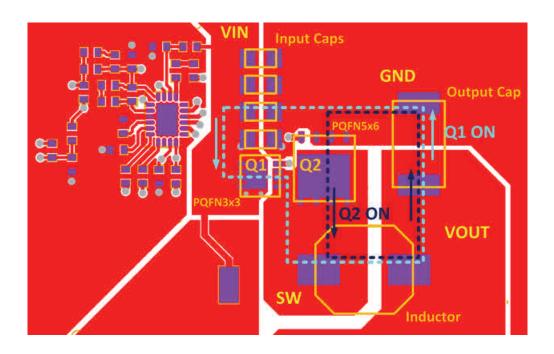
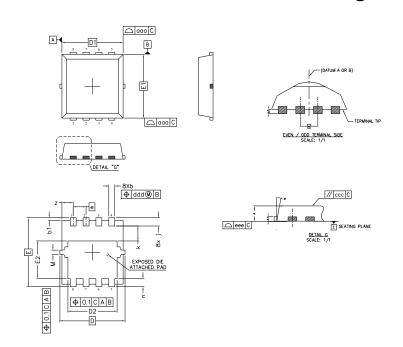
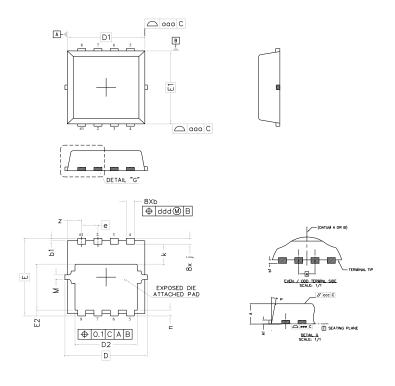



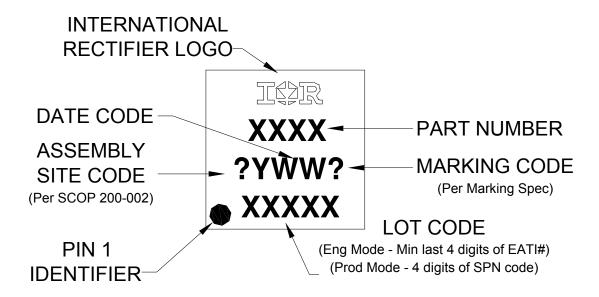
Fig 20. Placement and Layout Guidelines



PQFN 3.3 x 3.3 Outline "C" Package Details

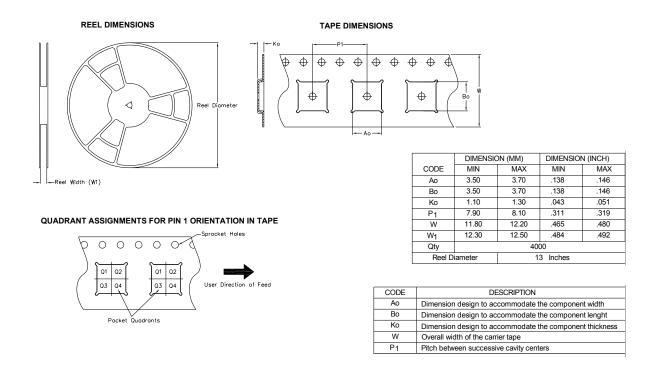
5.1.4	MILLIN	METERS	INCH	IES
DIM	MIN	MAX	MIN	MAX
А	0.70	0.80	.0276	.0315
A1	0.10	0.25	.0039	.0098
ь	0.25	0.35	.0098	.0138
b1	0.05	0.15	.0020	.0059
D	3.20	3.40	.1260	.1339
D1	3.00	3.20	.1181	.1260
D2	2.39	2.59	.0941	.1020
E	3.25	3.45	.1280	.1358
E1	3.00	3.20	.1181	.1260
E2	1.78	1.98	.0701	.0780
е	0.65	BSC	.0255 BSC	
j	0.30	0.50	.0118	.0197
k	0.59	0.79	.0232	.0311
n	0.30	0.50	.0118	.0197
М	0.03	0.23	.0012	.0091
Р	10°	12°	10°	12*
Z	0.50	0.70	.0197	.0276

PQFN 3.3 x 3.3 Outline "G" Package Details


5114	MILLIMETERS		INCH	IES	
DIM	MIN	MAX	MIN	MAX	
А	0.80	0.90	.0315	.0354	
A1	0.12	0.22	.0047	.0086	
ь	0.22	0.42	.0087	.0165	
b1	0.05	0.15	.0020	.0059	
D	3.30	BSC	.1299	BSC	
D1	3.10	BSC	.1220) BSC	
D2	2.29	2.69	.0902	.1059	
E	3.30 BSC		.1299 BSC		
E1	3.10	BSC	.1220 BSC		
E2	1.85	2.05	.0728	.0807	
е	0.65	BSC .0255 BSC		BSC	
j	0.15	0.35	.0059	.0137	
k	0.75	0.95	.0295	.0374	
n	0.15	0.35	.0059	.0137	
М	NOM.	0.20	NOM.	.0078	
Р	9°	11°	9°	11°	

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf



PQFN 3.3 x 3.3 Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 3.3 x 3.3 Tape and Reel

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Ouglification Laurel	Consumer				
Qualification Level	(per JEDEC JESD47F ^{††} guidelines)				
Moisture Sensitivity Level	PQFN 3.3mm x 3.3mm (per JEDEC J-STD-020D ^{††)}				
RoHS Compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot Starting $T_J=25^{\circ}C,\,L=0.15mH,\,R_G=50\Omega,\,I_{AS}=17A.$
- 3 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 4 R₀ is measured at T_J of approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf
- © Calculated continuous current based on maximum allowable junction temperature.
- ② Current is limited to 20A by source bonding technology.

Revision History

Date	Comments
6/6/2014	 Updated schematic on page 1 Updated tape and reel on page 9
7/1/2014	Remove "SAWN" package outline on page 8.
2/23/2016	 Updated datasheet with corporate template Updated package outline to reflect the PCN # (241-PCN30-Public) for "Option C" and "Option G" on page 8.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.