

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

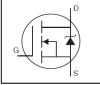
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HEXFET® Power MOSFET

Orderable Part Number

IRFI540NPbF



- Advanced Process Technology
- Isolated Package
- High Voltage Isolation = 2.5KVRMS (\$)
- Sink to Lead Creepage Dist. = 4.8mm
- Fully Avalanche Rated

Base Part Number

IRFI540NPbF

Lead-Free

$V_{ t DSS}$	100V
$R_{DS(on)}$	0.052Ω
l _n	20A

Standard Pack

Quantity

50

Trees.
TO-220 Full-Pak

G	D	S
Gate	Drain	Source

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 Full Pak eliminates the need for additional insulating hardware in commercial-industrial applications. The molding compound used provides a high isolation capability and a low thermal resistance between the tab and external heat sink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heat sink using a single clip or by a single screw fixing.

Package Type

TO-220 Full-Pak

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	20	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	14	Α
l _{DM}	Pulsed Drain Current ①⑥	110	
P _D @T _C = 25°C	Maximum Power Dissipation	54	W
	Linear Derating Factor	0.36	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②⑥	300	mJ
AR	Avalanche Current ①⑥	16	Α
E _{AR}	Repetitive Avalanche Energy ①	5.4	mJ
dv/dt	Peak Diode Recovery dv/dt3 6	5.0	V/ns
T_J	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Form

Tube

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ hetaJC}$	Junction-to-Case		2.8	°C/W
$R_{ heta JA}$	Junction-to-Ambient		65	C/VV

2017-04-27

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA ®
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.052	Ω	V _{GS} = 10V, I _D = 11A
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	11			S	V _{DS} = 50V, I _D = 16A [®]
1	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 100V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -20V$
Q_g	Total Gate Charge			94		I _D = 16A
Q_gs	Gate-to-Source Charge			15	nC	V _{DS} = 80V
Q_{qd}	Gate-to-Drain Charge			43		V _{GS} = 10V , See Fig. 6 and 13④@
$t_{d(on)}$	Turn-On Delay Time		8.2			$V_{DD} = 50V$
t _r	Rise Time		39			I _D = 16A
t _{d(off)}	Turn-Off Delay Time		44		ns	$R_G = 5.1\Omega$
t _f	Fall Time		33			R _D = 3.0Ω, See Fig. 10④⑥
L_D	Internal Drain Inductance		4.5		nH	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		11171	from package and center of die contact
C _{iss}	Input Capacitance		1400			$V_{GS} = 0V$
C _{oss}	Output Capacitance		330		ъГ	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170		pF	f = 1.0MHz, See Fig. 5®
С	Drain to Sink Capacitance		12			f = 1.0 MHz
Source-Drain	Ratings and Characteristics					
	Parameter	Min.	Тур.	Max.	Units	Conditions
1	Continuous Source Current			20		MOSFET symbol
e		I ——		ı /U	1	-

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			20		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			110		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 11A, V_{GS} = 0V \oplus$
t _{rr}	Reverse Recovery Time		170	250	ns	$T_J = 25^{\circ}C, I_F = 16A$
Q _{rr}	Reverse Recovery Charge		1.1	1.6	μС	di/dt = 100A/µs ④

Notes:

- $^{\circ}$ V_{DD} = 25V, starting T_J = 25°C, L = 2.0mH, R_G = 25 Ω , I_{AS} = 16A (See fig. 12)
- $\label{eq:local_local_local} \text{\Im} \quad I_{SD} \leq 16 A, \ di/dt \leq 210 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ t=60s, *f*=60Hz
- © Uses IRF540N data and test conditions.

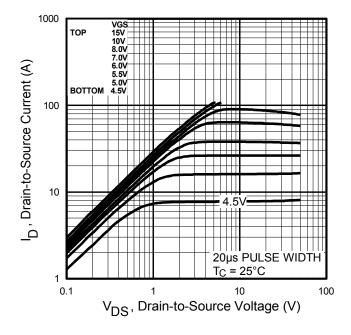


Fig. 1 Typical Output Characteristics

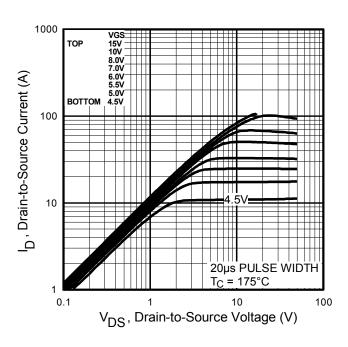
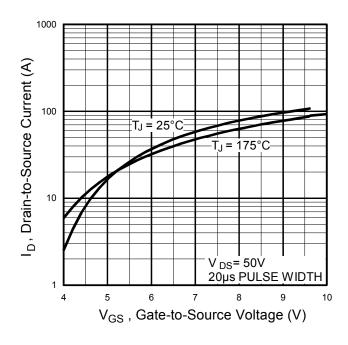
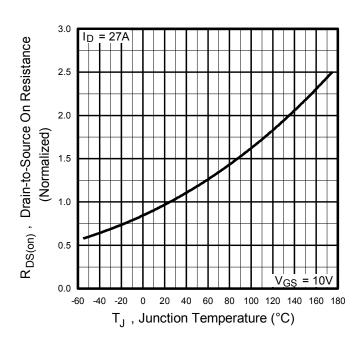
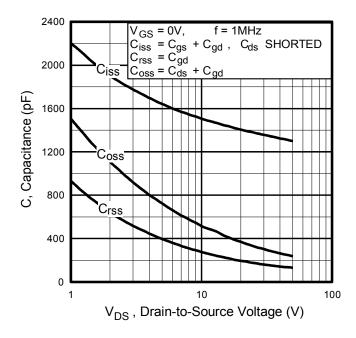


Fig. 2 Typical Output Characteristics

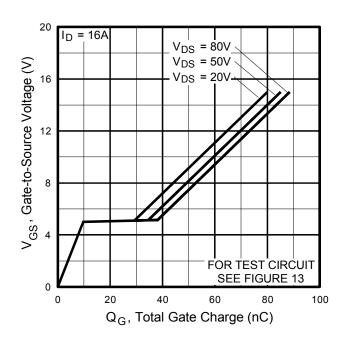

Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

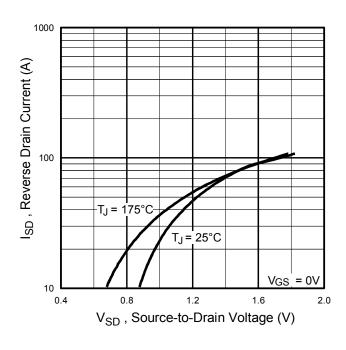


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

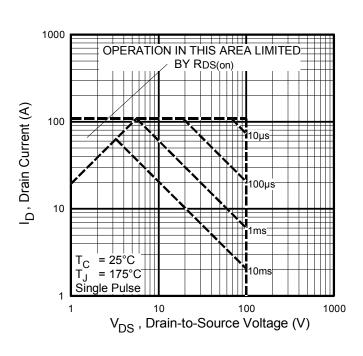


Fig 8. Maximum Safe Operating Area

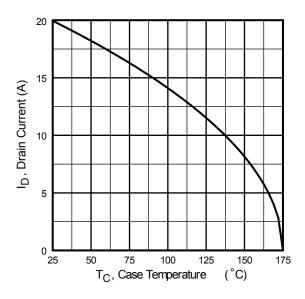


Fig 9. Maximum Drain Current vs. Case Temperature

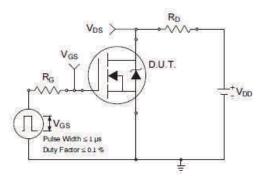


Fig 10a. Switching Time Test Circuit

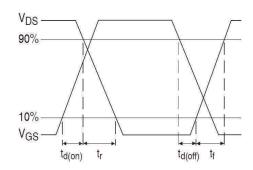


Fig 10b. Switching Time Waveforms

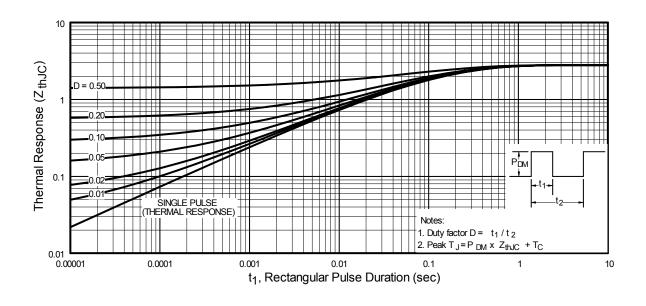


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

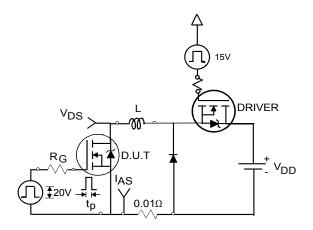


Fig 12a. Unclamped Inductive Test Circuit

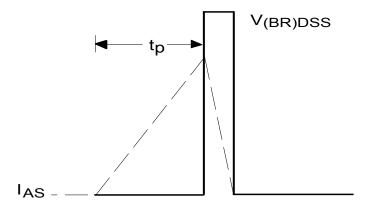


Fig 12b. Unclamped Inductive Waveforms

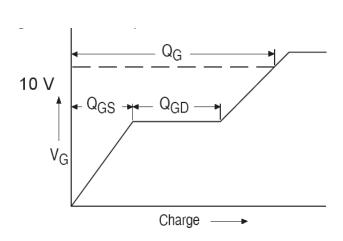
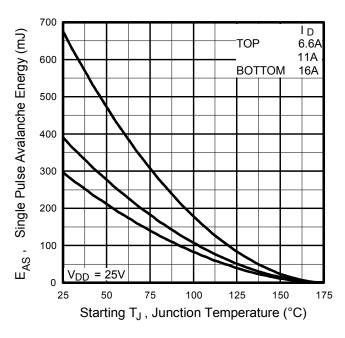



Fig 13a. Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy vs. Drain Current

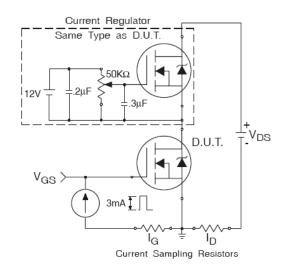
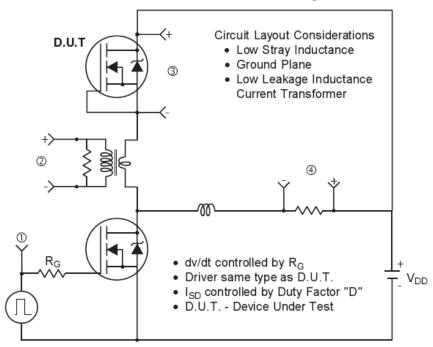
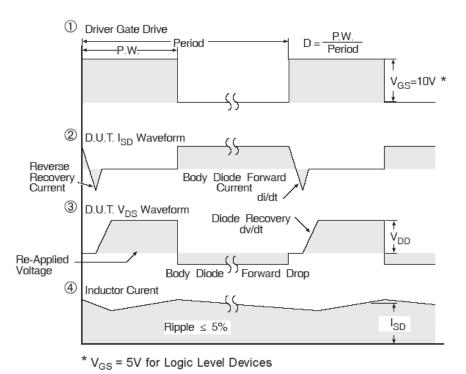



Fig 13b. Gate Charge Test Circuit

2017-04-27

Peak Diode Recovery dv/dt Test Circuit



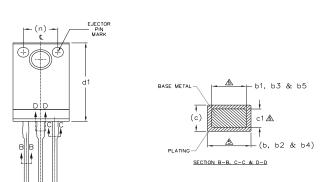


Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

TO-220 Full-Pak Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.0 DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- 2,0 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- <u>気</u>る LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTER MOST EXTREMES OF THE PLASTIC BODY.

50 DIMENSION 61, 63, 65 & c1 APPLY TO BASE METAL ONLY.

6.0 STEP OPTIONAL ON PLASTIC BODY DEFINED BY DIMENSIONS u & v.

.0 CONTROLLING DIMENSION : INCHES.

	S Y M		DIMEN	IS	IONS		N
	В	MILLIMETERS			INC	O T E S	
	0 L	MIN.	MAX.		MIN.	MAX.	S
	Α	4.57	4.83		.180	.190	
	A1	2.57	2.82		.101	.111	
	Α2	2.51	2.92		.099	.115	
	b	0.61	0.94		.024	.037	
	ь1	0.61	0.89		.024	.035	5
	b2	0.76	1.27		.030	.050	
	ьЗ	0.76	1.22		.030	.048	5
	b4	1.02	1.52		.040	.060	
	b5	1.02	1.47		.040	.058	5
	С	0.33	0.63		.013	.025	
	c1	0.33	0.58		.013	.023	5
	D	8.66	9.80		.341	.386	4
	d1	15.80	16.13		.622	.635	
	d2	13.97	14.22		.550	.560	
	d3	12.29	12.93		.484	.509	
L	Ε	9.63	10.74		.379	.423	4
	е		BSC			BSC	
	L	13.21	13.72		.520	.540	
	L1	3.10	3.68		.122	.145	3
	n	6.05	6.60		.238	.260	
	ØΡ	3.05	3.45		.120	.136	
	u	2.39	2.49		.094	.098	6
	٧	0.41	0.51		.016	.020	6
	Ø1	_	45°		_	45°	

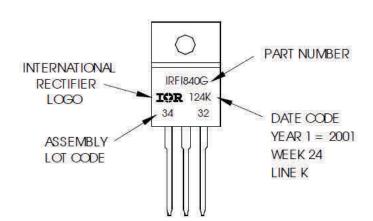
LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE

IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER


TO-220 Full-Pak Part Marking Information

EXAMPLE: THIS IS AN IRFI840G WITH ASSEMBLY

LOT CODE 3432

ASSEMBLED ON WW 24, 2001 IN THE ASSEMBLY LINE "K"

Note: "P" in assembly line position indicates "Lead-Free"

TO-220AB Full-Pak packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to website at http://www.irf.com/package/

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) [†]			
Moisture Sensitivity Level	TO-220 Full-Pak N/A			
RoHS Compliant	Yes			

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments
	Changed datasheet with Infineon logo - all pages.
04/27/2017	Corrected Package Outline on page 8.
	Added disclaimer on last page.

Trademarks of Infineon Technologies AG

HVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.