

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

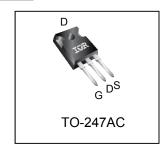
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HEXFET® Power MOSFET

93A

Application


- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

G s

V _{DSS}	250V
R _{DS(on) typ.}	14.5mΩ
may	17 5mO

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant

 I_D

G	D	S
Gate	Drain	Source

Base next number	Dookogo Tymo	Standard Pack		Orderable Port Number
Base part number	Package Type	Form Quantity		Orderable Part Number
IRFP4768PbF	TO-247AC	Tube	25	IRFP4768PbF

	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V	93	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	66	Α
I _{DM}	Pulsed Drain Current ①	370	
P _D @T _C = 25°C	Maximum Power Dissipation	520	W
Linear Derating Factor		3.4	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
dv/dt Peak Diode Recovery dv/dt ③		24	V/ns
T _J Operating Junction and Storage Temperature Range		-55 to + 175	- °C
	Soldering Temperature, for 10 seconds (1.6mm from case)		
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②	770	mJ
I _{AR}	Avalanche Current ①	Coo Fig. 14, 15, 220, 22b	Α
E _{AR}	Repetitive Avalanche Energy ①	See Fig. 14, 15, 22a, 22b	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ⑦®		0.29	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.24		°C/W
$R_{ heta JA}$	Junction-to-Ambient		40	

2016-12-12

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	250			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.20		V/°C	Reference to 25°C, I _D = 5mA ①
R _{DS(on)}	Static Drain-to-Source On-Resistance		14.5	17.5	$m\Omega$	$V_{GS} = 10V, I_D = 56A$
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
ı	Drain to Course Leakage Current			20		$V_{DS} = 250 \text{ V}, V_{GS} = 0 \text{V}$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 250V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	n 1	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
R_G	Gate Resistance		0.71		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

-	•		_	-		
gfs	Forward Transconductance	100			S	$V_{DS} = 50V, I_{D} = 56A$
Q_q	Total Gate Charge		180	270		I _D = 56A
Q_{gs}	Gate-to-Source Charge		52		nC	V _{DS} = 125V V _{GS} = 10V ④
Q_{gd}	Gate-to-Drain Charge		72		IIC	V _{GS} = 10V ④
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		108			
$t_{d(on)}$	Turn-On Delay Time		36			V _{DD} = 163V
t _r	Rise Time		160		no	I _D = 56A
$t_{d(off)}$	Turn-Off Delay Time		57		ns	$R_G = 1.0\Omega$
t _f	Fall Time		110			V _{GS} = 10V ④
C _{iss}	Input Capacitance		10880			$V_{GS} = 0V$
Coss	Output Capacitance		700			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		210		pF	f = 1.0MHz, See Fig. 5
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		510			V _{GS} = 0V, VDS = 0V to 200V⑥
Coss eff.(TR)	Output Capacitance (Time Related)		830			V _{GS} = 0V, VDS = 0V to 200V⑤

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)			93		MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			370		integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 56A, V_{GS} = 0V $ ④	
4	Dayoraa Dagayary Tima		180		no	$T_{J} = 25^{\circ}C$ $V_{DD} = 200V$	
t _{rr}	Reverse Recovery Time		200		ns	$T_J = 125^{\circ}C$ $I_F = 56A$,	
0	Dayoraa Dagayary Charga		1480		20	<u>T</u> _J = 25°C di/dt = 100A/μs ④	
Q _{rr}	Reverse Recovery Charge		2260		nC	<u>T_J = 125°C</u>	
I _{RRM}	Reverse Recovery Current		16		Α	T _J = 25°C	
t _{on}	Forward Turn-On Time	Intri	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} starting T_J = 25°C, L = 0.50mH, R_G = 25 Ω , I_{AS} = 56A, V_{GS} =10V. Part not recommended for use above this value.
- $\exists \quad I_{SD} \leq 56A, \ di/dt \leq 950A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- ④ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \circ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\$

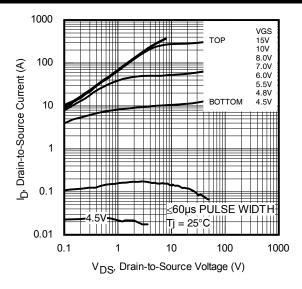


Fig 1. Typical Output Characteristics

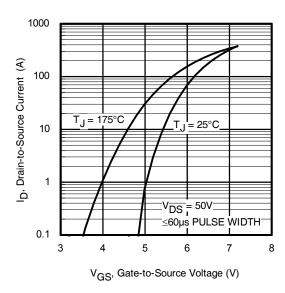


Fig 3. Typical Transfer Characteristics

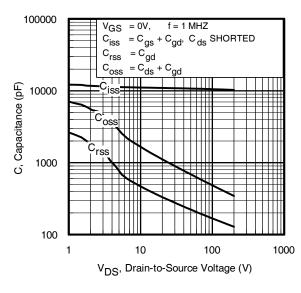


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

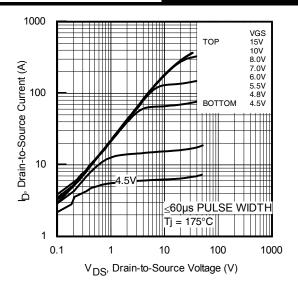


Fig 2. Typical Output Characteristics

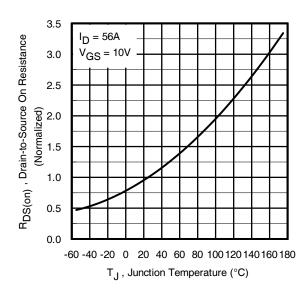


Fig 4. Normalized On-Resistance vs. Temperature

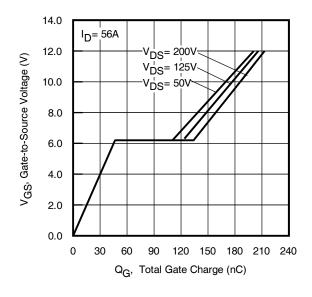


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

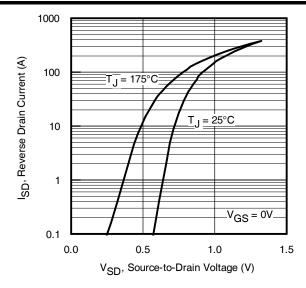


Fig 7. Typical Source-Drain Diode Forward Voltage

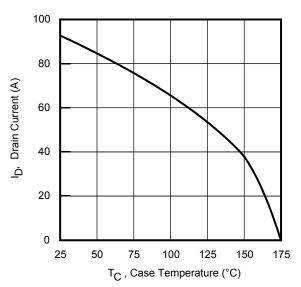


Fig 9. Maximum Drain Current vs. Case Temperature

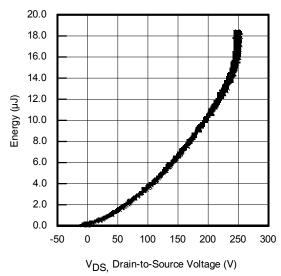


Fig 11. Typical Coss Stored Energy

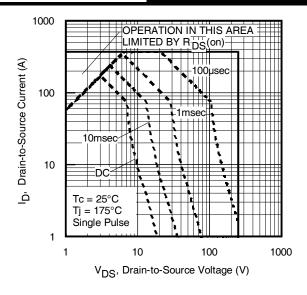


Fig 8. Maximum Safe Operating Area

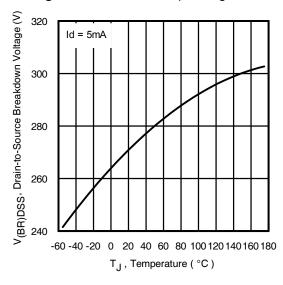


Fig 10. Drain-to-Source Breakdown Voltage

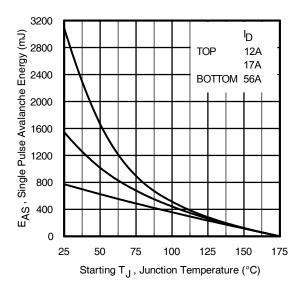


Fig 12. Maximum Avalanche Energy vs. Drain Current

4

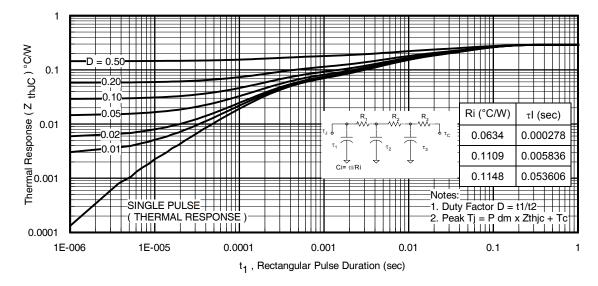
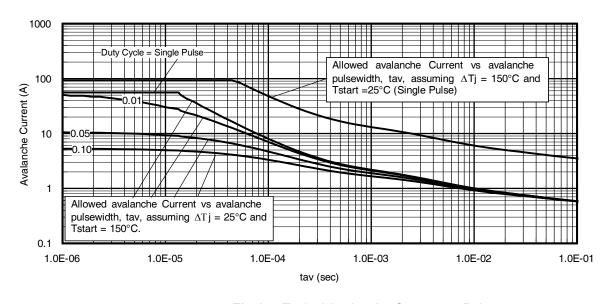



Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

800 TOP Single Pulse BOTTOM 1.0% Duty Cycle 700 I_D = 56A EAR, Avalanche Energy (mJ) 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T_{.1}, Junction Temperature (°C)

Fig 14. Typical Avalanche Current vs. Pulse

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tj_{max}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a,22b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- ΔT=Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$P_{D \text{ (ave)}} = 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{Z}_{\text{thJC}}$$

$$I_{av} = 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{\text{th}} \text{]}$$

 $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

Fig 15. Maximum Avalanche Energy vs. Temperature

2016-12-12

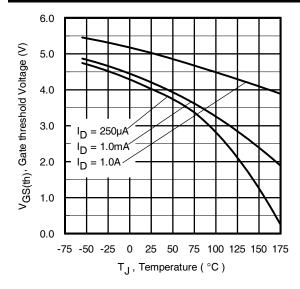


Fig 16. Threshold Voltage vs. Temperature

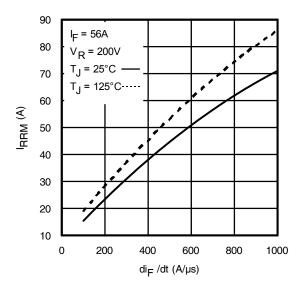


Fig 18. Typical Recovery Current vs. dif/dt

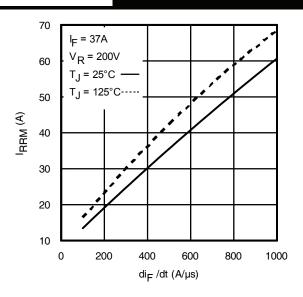


Fig 17. Typical Recovery Current vs. dif/dt

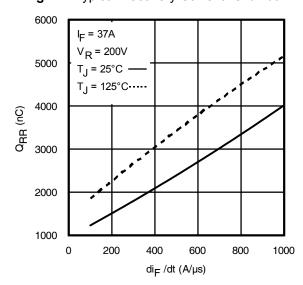


Fig 19. Typical Stored Charge vs. dif/dt

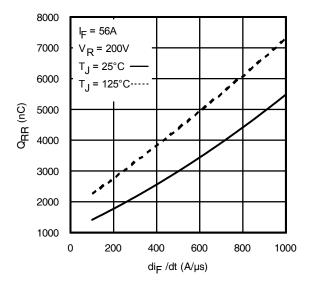


Fig 20. Typical Stored Charge vs. dif/dt

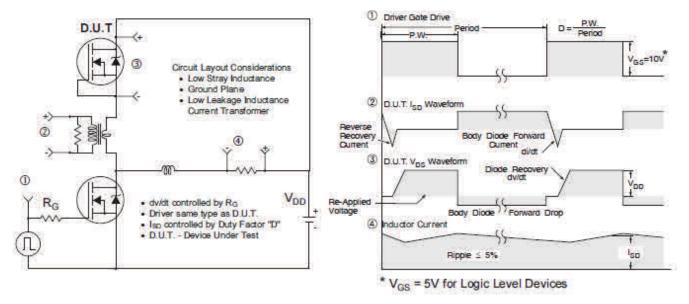


Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

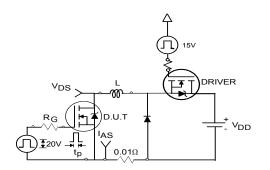


Fig 22a. Unclamped Inductive Test Circuit

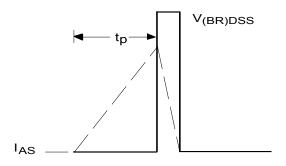


Fig 22b. Unclamped Inductive Waveforms

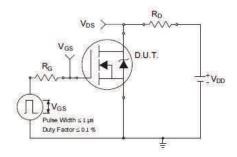


Fig 23a. Switching Time Test Circuit



Fig 23b. Switching Time Waveforms

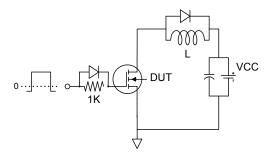
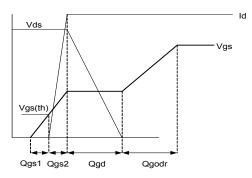
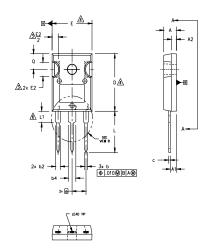
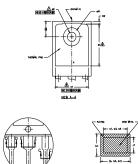


Fig 24a. Gate Charge Test Circuit




Fig 24b. Gate Charge Waveform


7

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994

2. DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

A\ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)

PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 $\stackrel{\frown}{b}$ thermal pad contour optional within dimensions D1 & E1.

6. LEAD FINISH UNCONTROLLED IN L1.

7 P TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

		DIMEN	ISIONS		
SYMBOL	INC	HES	MILLIM	ETERS	1
	MIN.	MAX.	MIN.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
ь	.039	.055	0.99	1.40	
ь1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
c	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
E	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
e	.215	BSC	5.46	BSC	1
Øk	.0	10	0.25]
L	.559	.634	14.20	16.10]
L1	.146	.169	3.71	4.29	
ØΡ	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	
					l

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

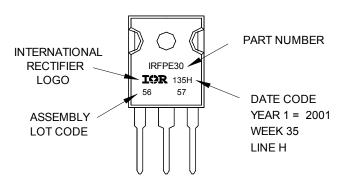
DIODES

- 1.- ANODE/OPEN
- 2.- CATHODE
- 3.- ANODE

TO-247AC Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

EXAMPLE: THIS IS AN IRFPE30


WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2001

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †			
Moisture Sensitivity Level	TO-247AC N/A			
RoHS Compliant	Yes			

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments					
12/12/2016	 Changed datasheet with Infineon logo-all pages Corrected error on figure 9 on page 4. Added disclaimer on last page. 					

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.