Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## International IOR Rectifier ## IRFR3704Z IRFU3704Z HEXFET® Power MOSFET | V _{DSS} | R _{DS(on)} max | Qg | |------------------|-------------------------|-------| | 20V | 8.4m $Ω$ | 9.3nC | # Converters for Computer Processor Power IRFR3704Z IRFU3704Z ### **Applications** - High Frequency Synchronous Buck - High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use ### **Benefits** - Very Low R_{DS(on)} at 4.5V V_{GS} - Ultra-Low Gate Impedance - Fully Characterized Avalanche Voltage and Current **Absolute Maximum Ratings** | | Parameter | Max. | Units | | |---|---|-----------------------|-------|--| | V_{DS} | Drain-to-Source Voltage | 20 | V | | | V_{GS} | Gate-to-Source Voltage | ± 20 | | | | I _D @ T _C = 25°C | Continuous Drain Current, V _{GS} @ 10V | 60④ | Α | | | I _D @ T _C = 100°C | Continuous Drain Current, V _{GS} @ 10V | 42④ | | | | DM | Pulsed Drain Current ① | 240 | | | | P _D @T _C = 25°C | Maximum Power Dissipation | 48 | W | | | P _D @T _C = 100°C | Maximum Power Dissipation | 24 | | | | | Linear Derating Factor | 0.32 | W/°C | | | Γ _J | Operating Junction and | -55 to + 175 | °C | | | T _{STG} | Storage Temperature Range | | | | | | Soldering Temperature, for 10 seconds | 300 (1.6mm from case) | | | ### **Thermal Resistance** | | Parameter | Тур. | Max. | Units | |-----------------|-----------------------------------|------|------|-------| | $R_{\theta JC}$ | Junction-to-Case | | 3.1 | °C/W | | $R_{\theta JA}$ | Junction-to-Ambient (PCB Mount) © | | 50 | | | $R_{\theta JA}$ | Junction-to-Ambient | | 110 | | Notes ① through ⑤ are on page 11 International IOR Rectifier ### Static @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |--------------------------------|---|------|-------|------|-------|---| | BV _{DSS} | Drain-to-Source Breakdown Voltage | 20 | _ | | ٧ | $V_{GS} = 0V, I_D = 250\mu A$ | | $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | _ | 0.015 | | V/°C | Reference to 25°C, I _D = 1mA | | R _{DS(on)} | Static Drain-to-Source On-Resistance | _ | 6.7 | 8.4 | mΩ | V _{GS} = 10V, I _D = 15A ③ | | | | _ | 9.2 | 11.4 | | $V_{GS} = 4.5V, I_D = 12A$ ③ | | $V_{GS(th)}$ | Gate Threshold Voltage | 1.65 | 2.1 | 2.55 | ٧ | $V_{DS} = V_{GS}$, $I_D = 250\mu A$ | | $\Delta V_{GS(th)}/\Delta T_J$ | Gate Threshold Voltage Coefficient | | -5.5 | | mV/°C | | | I _{DSS} | Drain-to-Source Leakage Current | _ | _ | 1.0 | μΑ | $V_{DS} = 16V, V_{GS} = 0V$ | | | | | _ | 150 | 1 | $V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125$ °C | | I _{GSS} | Gate-to-Source Forward Leakage | _ | _ | 100 | nA | V _{GS} = 20V | | | Gate-to-Source Reverse Leakage | | _ | -100 | 1 | V _{GS} = -20V | | gfs | Forward Transconductance | 41 | _ | _ | S | $V_{DS} = 10V, I_{D} = 12A$ | | Q_g | Total Gate Charge | | 9.3 | 14 | | | | Q_{gs1} | Pre-Vth Gate-to-Source Charge | | 3.0 | | | $V_{DS} = 10V$ | | Q _{gs2} | Post-Vth Gate-to-Source Charge | _ | 1.1 | | nC | $V_{GS} = 4.5V$ | | Q_{gd} | Gate-to-Drain Charge | _ | 2.7 | | 1 | I _D = 12A | | Q_{godr} | Gate Charge Overdrive | | 2.5 | | 1 | See Fig. 16 | | Q_{sw} | Switch Charge (Q _{gs2} + Q _{gd}) | | 3.8 | | | | | Q _{oss} | Output Charge | _ | 5.6 | | nC | $V_{DS} = 10V, V_{GS} = 0V$ | | $t_{d(on)}$ | Turn-On Delay Time | _ | 41 | | | $V_{DD} = 10V, V_{GS} = 4.5V$ ③ | | t _r | Rise Time | | 8.9 | | 1 | I _D = 12A | | $t_{d(off)}$ | Turn-Off Delay Time | | 4.9 | | ns | Clamped Inductive Load | | t _f | Fall Time | | 12 | | 1 | | | C _{iss} | Input Capacitance | | 1190 | | | $V_{GS} = 0V$ | | C _{oss} | Output Capacitance | | 380 | | pF | $V_{DS} = 10V$ | | C _{rss} | Reverse Transfer Capacitance | | 170 | | 1 | f = 1.0 MHz | ### **Avalanche Characteristics** | | Parameter | Тур. | Max. | Units | |-----------------|--|------|------|-------| | E _{AS} | Single Pulse Avalanche Energy ^② | _ | 41 | mJ | | I _{AR} | Avalanche Current ① | | 12 | Α | | E _{AR} | Repetitive Avalanche Energy ① | _ | 4.8 | mJ | ### **Diode Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------|---------------------------|-----------|--|------|-------|--| | I _S | Continuous Source Current | | | 60@ | | MOSFET symbol | | | (Body Diode) | | | | Α | showing the | | I _{SM} | Pulsed Source Current | | | 240 | | integral reverse | | | (Body Diode) ① | | | | | p-n junction diode. | | V_{SD} | Diode Forward Voltage | | | 1.0 | V | $T_J = 25$ °C, $I_S = 12A$, $V_{GS} = 0V$ ③ | | t _{rr} | Reverse Recovery Time | | 13 | 19 | ns | $T_J = 25$ °C, $I_F = 12A$, $V_{DD} = 10V$ | | Q_{rr} | Reverse Recovery Charge | | 4.2 | 6.3 | nC | di/dt = 100A/μs ③ | | t _{on} | Forward Turn-On Time | Intrinsio | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) | | | | # International TOR Rectifier ## IRFR/U3704Z Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature International **IOR** Rectifier **Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage **Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 2.5 (x) each poly poly 2.0 $I_D = 250 \mu A$ 1.5 $I_D = 250 \mu A$ 1.5 $I_D = 250 \mu A$ 1.7 1. Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case # International IOR Rectifier Fig 12a. Unclamped Inductive Test Circuit Fig 12b. Unclamped Inductive Waveforms Fig 13. Gate Charge Test Circuit Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 14a. Switching Time Test Circuit **Fig 14b.** Switching Time Waveforms www.irf.com Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 16. Gate Charge Waveform ### Power MOSFET Selection for Non-Isolated DC/DC Converters #### **Control FET** Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{\rm ds(on)}$ of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; $$P_{loss} = P_{conduction} + P_{switching} + P_{drive} + P_{output}$$ This can be expanded and approximated by; $$\begin{split} P_{loss} &= \left(I_{rms}^{2} \times R_{ds(on)}\right) \\ &+ \left(I \times \frac{Q_{gd}}{i_{g}} \times V_{in} \times f\right) + \left(I \times \frac{Q_{gs2}}{i_{g}} \times V_{in} \times f\right) \\ &+ \left(Q_{g} \times V_{g} \times f\right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) \end{split}$$ This simplified loss equation includes the terms Q_{gs2} and Q_{oss} which are new to Power MOSFET data sheets. Q_{gs2} is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q_{gs1} and Q_{gs2} , can be seen from Fig 16. Q_{gs2} indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I_{dmax} at which time the drain voltage begins to change. Minimizing Q_{gs2} is a critical factor in reducing switching losses in Q1. $\rm Q_{\rm oss}$ is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how $\rm Q_{\rm oss}$ is formed by the parallel combination of the voltage dependant (nonlinear) capacitance's $\rm C_{\rm ds}$ and $\rm C_{\rm dg}$ when multiplied by the power supply input buss voltage. #### Synchronous FET The power loss equation for Q2 is approximated by; $$\begin{split} P_{loss} &= P_{conduction} + P_{drive} + P_{output}^* \\ P_{loss} &= \left(I_{rms}^2 \times R_{ds(on)}\right) \\ &+ \left(Q_g \times V_g \times f\right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) + \left(Q_{rr} \times V_{in} \times f\right) \end{split}$$ *dissipated primarily in Q1. For the synchronous MOSFET Q2, $R_{\text{ds(on)}}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q_{oss} and reverse recovery charge Q_{rr} both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and $V_{\rm in}.$ As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of $Q_{\rm gd}/Q_{\rm gs1}$ must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Qoss Characteristic ### D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) ### D-Pak (TO-252AA) Part Marking Information Notes: This part marking information applies to devices produced before 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 9U1P Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 1999 IN THE ASSEMBLY LINE "A" International TOR Rectifier ### I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) ### I-Pak (TO-251AA) Part Marking Information Notes: This part marking information applies to devices produced before 02/26/2001 Notes: This part marking information applies to devices produced after 02/26/2001 ### D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) - 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES). - 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. NOTES: 1. OUTLINE CONFORMS TO EIA-481. #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. - Starting $T_J = 25$ °C, L = 0.57mH, $R_G = 25\Omega$, $I_{AS} = 12A$. - 3 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$. - 4 Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A. - ⑤ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information, 07/03 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/