

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

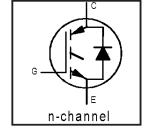
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

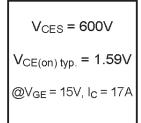
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International Rectifier

IRG4IBC30FDPbF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE


Fast CoPack IGBT


Features

- Very Low 1.59V votage drop
- 2.5kV, 60s insulation voltage ©
- 4.8 mm creapage distance to heatsink
- Fast: Optimized for medium operating frequencies (1-5 kHz in hard switching, >20 kHz in resonant mode).
- IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes
- · Tighter parameter distribution
- Industry standard Isolated TO-220 FullpakTM outline

- · Simplified assembly
- · Highest efficiency and power density
- HEXFREDTM antiparallel Diode minimizes switching losses and EMI
- Lead-Free

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	20.3	
I _C @ T _C = 100°C	Continuous Collector Current	11	
I _{CM}	Pulsed Collector Current ①	120	Α
I _{LM}	Clamped Inductive Load Current ②	120	
I _F @ T _C = 100°C	Diode Continuous Forward Current	8.5	
I _{FM}	Diode Maximum Forward Current	120	
Visol	RMS Isolation Voltage, Terminal to Case®	2500	V
V _{GE}	Gate-to-Emitter Voltage	± 20	
P _D @ T _C = 25°C	Maximum Power Dissipation	45	\perp w
P _D @ T _C = 100°C	Maximum Power Dissipation	18	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units	
R _{BJC}	Junction-to-Case - IGBT		2.8		
ReJC	Junction-to-Case - Diode		4.1	°C/W	
Reja	Junction-to-Ambient, typical socket mount		65		
Wt	Weight	2.0 (0.07)		g (oz)	

IRG4IBC30FDPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Condition	s
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage®	600			V	$V_{GE} = 0V, I_{C} = 250\mu A$	
$\Delta V_{(BR)CES}/\Delta T_{c}$	Temperature Coeff. of Breakdown Voltage		0.69		V/°C	$V_{GE} = 0V$, $I_{C} = 1.0$ mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		1.59	1.8		I _C = 17A	V _{GE} = 15V
			1.99		V	I _C = 31A	See Fig. 2, 5
			1.70			I _C = 17A, T _J = 150°C	
$V_{\text{GE(th)}}$	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
ΔV _{GE(th)} /ΔT _J	Temperature Coeff. of Threshold Voltage		-11		mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
g fe	Forward Transconductance	6.1	10	-	S	V_{CE} = 100V, I_{C} = 17A	
I _{CES}	Zero Gate Voltage Collector Current		-	250	μΑ	$V_{GE} = 0V, V_{CE} = 600V$	
				2500		$V_{GE} = 0V, V_{CE} = 600V,$	T _J = 150°C
V_{FM}	Diode Forward Voltage Drop		1.4	1.7	V	I _C = 12A	See Fig. 13
			1.3	1.6		I _C = 12A, T _J = 150°C	
I _{GES}	Gate-to-Emitter Leakage Current			±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Q_g	Total Gate Charge (turn-on)		51	77		I _C = 17A	
Qge	Gate - Emitter Charge (turn-on)	—	7.9	12	пC	V _{CC} = 400V See Fig. 8	
Qgc	Gate - Collector Charge (turn-on)	_	19	28		V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time		42			T _J = 25°C	
tr	Rise Time		26		ns	$I_{\rm C}$ = 17A, $V_{\rm CC}$ = 480V	
t _{d(off)}	Turn-Off Delay Time	l	230	350		V_{GE} = 15V, R_{G} = 23 Ω	
t_f	Fall Time	ļ	160	230		Energy losses include "tail" and	
Eon	Turn-On Switching Loss		0.63			diode reverse recovery.	
E _{off}	Turn-Off Switching Loss		1.39		mJ	See Fig. 9, 10, 11, 18	
Ets	Total Switching Loss		2.02	3.9			
t _{d(on)}	Turn-On Delay Time		42			T _J = 150°C, See Fig. 9, 10, 11, 18	
t _r	Rise Time		27		ns	I _C = 17A, V _{CC} = 480V	
$t_{d(off)}$	Turn-Off Delay Time	—	310			V_{GE} = 15V, R_{G} = 23 Ω	
tf	Fall Time		310			Energy losses include "tail" and	
Ets	Total Switching Loss		3.2		mJ	diode reverse recovery.	
LE	Internal Emitter Inductance		7.5		nН	Measured 5mm from package	
Cies	Input Capacitance		1100	_		V _{GE} = 0V	
Coes	Output Capacitance		74		рF	$V_{CC} = 30V$ See Fig. 7	
C _{res}	Reverse Transfer Capacitance		14			f = 1.0MHz	
t _{rr}	Diode Reverse Recovery Time		42	60	ns	T」= 25°C See Fig.	
			80	120		T _J = 125°C 14 I _F = 12A	
Irr	Diode Peak Reverse Recovery Current		3.5	6.0	Α	T」= 25°C See Fig.	
			5.6	10		T _J = 125°C 15 V _R = 200V	
Q _{rr}	Diode Reverse Recovery Charge		80	180	пC	T _J = 25°C See Fig.	
			220	600		T _J = 125°C 16 di/dt 200A/μs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		180		A/µs	T」= 25°C See Fig.	
. ,	During t _b		120			T _J = 125°C 17	

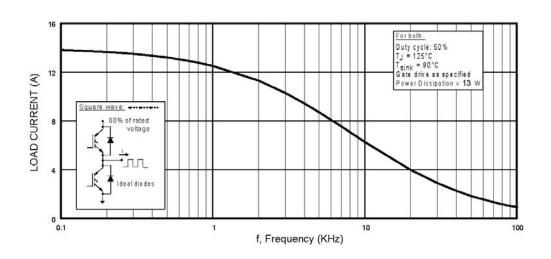


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

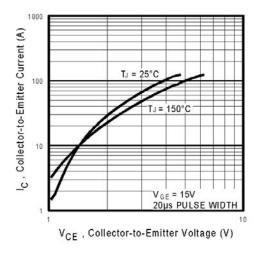


Fig. 2 - Typical Output Characteristics

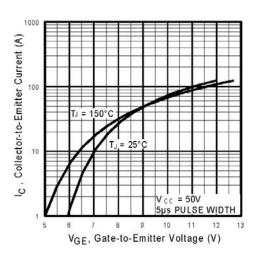
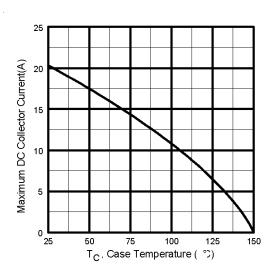



Fig. 3 - Typical Transfer Characteristics

2.5 V_{GE} = 15V 80µs PULSE WIDTH Ic = 34A Ic = 17A Ic = 8.5A I, Junction Temperature (°C)

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

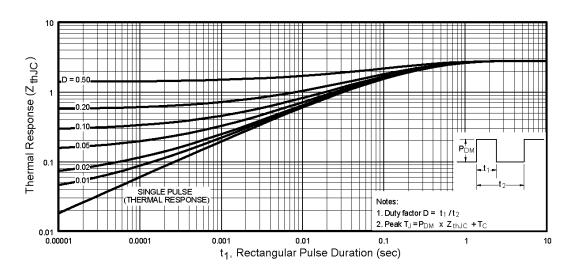
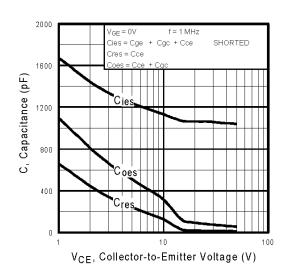



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International Rectifier

IRG4IBC30FDPbF

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

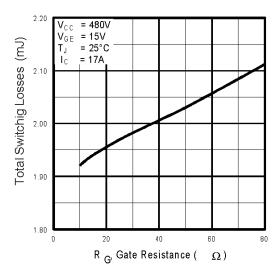
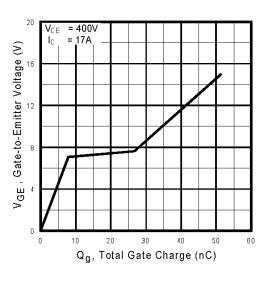
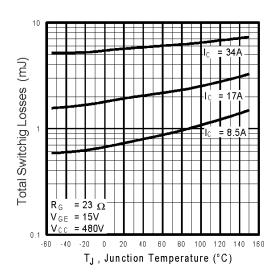




Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

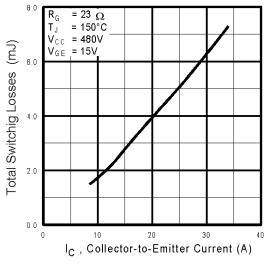


Fig. 10 - Typical Switching Losses vs. JunctionTemperature

IRG4IBC30FDPbF

International

TOR Rectifier

V_{GE} = 20V T_J = 125°C

SAFE OPERATING AREA

V_{CE}, Collector-to-Emitter Voltage (V)

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

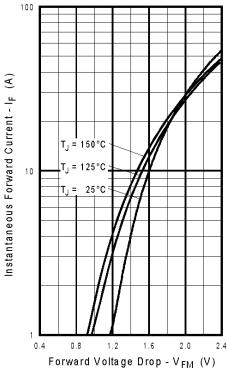


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

International TOR Rectifier

IRG4IBC30FDPbF

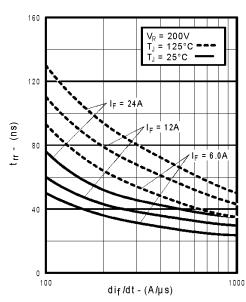


Fig. 14 - Typical Reverse Recovery vs. di_f/dt

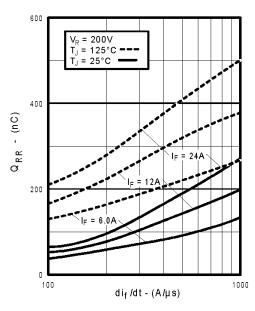


Fig. 16 - Typical Stored Charge vs. dif/dt

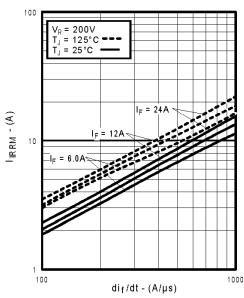
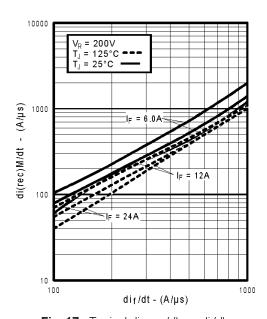
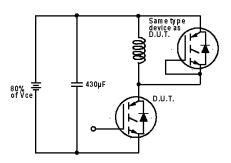




Fig. 15 - Typical Recovery Current vs. di_f/dt

 $\textbf{Fig. 17} \text{ - Typical } \text{di}_{(\text{rec})M}/\text{dt vs. } \text{di}_{\text{f}}/\text{dt}$

 $\label{eq:Fig. 18a} \textbf{Fig. 18a} \text{ - Test Circuit for Measurement of } \\ I_{LM}, E_{on}, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_{d(on)}, t_r, t_{d(off)}, t_f \\$

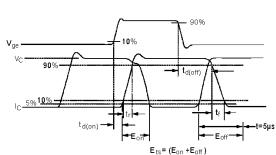
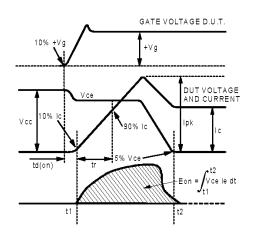
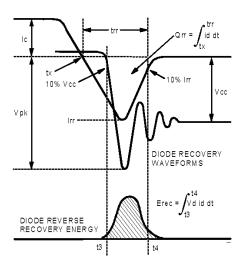




Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{ Defining E_{on}, $t_{d(on)}$, t_r}$

International Rectifier

IRG4IBC30FDPbF

Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.

VOLTAGE IN D.U.T.

CURRENT IN D1

Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

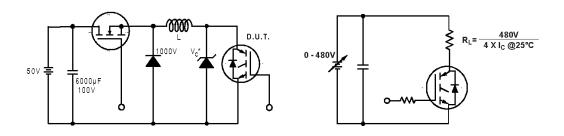
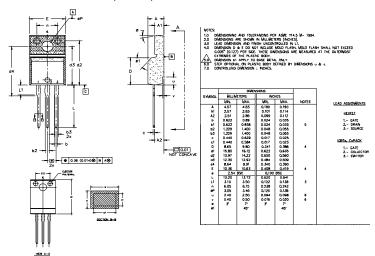


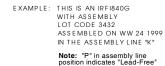
Figure 19. Clamped Inductive Load Test Circuit

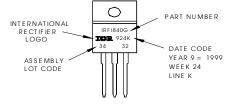
Figure 20. Pulsed Collector Current Test Circuit

IRG4IBC30FDPbF



Notes:


- ① Repetitive rating: V_{GE}=20V; pulse width limited by maximum junction temperature (figure 20)
- V_{CC}=80%(V_{CES}), V_{GE}=20V, L=10 μ H, R_G = 23 Ω (figure 19)
- ③ Pulse width ≤ $80\mu s$; duty factor ≤ 0.1%.
- @ Pulse width 5.0µs, single shot.
- 5 t = 60s, f = 60Hz


TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

TO-220 Full-Pak Part Marking Information

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04

10

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/