

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

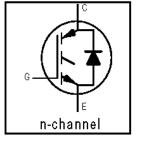
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

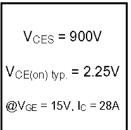
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

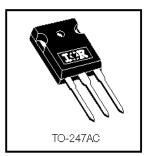
International

IRG4PF50WDPbF

IST Rectifier INSULATED GATE BIPOLAR TRANSISTOR WITH


ULTRAFAST SOFT RECOVERY DIODE


Features


- · Optimized for use in Welding and Switch-Mode Power Supply applications
- · Industry benchmark switching losses improve efficiency of all power supply topologies
- · 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- · Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
- IGBT co-packaged with HEXFRED™ ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- · Industry standard TO-247AC package
- Lead-Free

Benefits

- · Lower switching losses allow more cost-effective operation and hence efficient replacement of larger-die MOSFETs up to 100kHz
- HEXFRED[™] diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses
 Absolute Waximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	900	V
Ic @ Tc = 25°C	Continuous Collector Current	51	
Ic @ Tc = 100°C	Continuous Collector Current	28	Α
Icm	Pulsed Collector Current ①	204	
I _{LM}	Clamped Inductive Load Current ②	204	
I _F @ T _C = 100°C	Diode Continuous Forward Current	16	
IFM	Diode Maximum Forward Current	204	
V_{GE}	Gate-to-Emitter Voltage	± 20	٧
P _D @ T _C = 25°C	Maximum Power Dissipation	200	l w
P _D @ T _C = 100°C	Maximum Power Dissipation	78	7,0
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 se∞nds	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Reuc	Junction-to-Case - IGBT			0.64	
R _{eJC}	Junction-to-Case - Diode			0.83	°C/W
R _{ecs}	Case-to-Sink, flat, greased surface	_	0.24		1
Reja	Junction-to-Ambient, typical socket mount			40	
Wt	Weight		6 (0.21)		g (oz)

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage®	900			V	$V_{GE} = 0V$, $I_{C} = 250\mu A$
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage	_	0.295		V/°C	$V_{GE} = 0V$, $I_{C} = 3.5 mA$
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.25	2.7		$I_C = 28A$ $V_{GE} = 15V$
		_	2.74	_	V	I _C = 60A See Fig. 2, 5
		_	2.12	_		I _C = 28A, T _J = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$
Δ∨αε(τη/ΔΤυ	Temperature Coeff. of Threshold Voltage	ı	-13		mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
gfe	Forward Transconductance ⊕	26	39		S	$V_{CE} = 50V$, $I_{C} = 28A$
Ices	Zero Gate Voltage Collector Current		_	500	μΑ	V _{GE} = 0V, V _{CE} = 900V
			_	2.0		$V_{GE} = 0V, V_{CE} = 10V, T_{J} = 25$ °C
			_	6.5	mΑ	$V_{GE} = 0V, V_{CE} = 900V, T_{J} = 150$ °C
V _{FM}	Diode Forward Voltage Drop		2.5	3.5	V	I _C = 16A See Fig. 13
		_	2.1	3.0		I _C = 16A, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	-	±100	nΑ	$V_{GE} = \pm 20V$

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)	_	160	240		I _C = 28A	
Qge	Gate - Emitter Charge (turn-on)	_	19	29	nC	V _{CC} = 400V See Fig. 8	
Qgc	Gate - Collector Charge (turn-on)	_	53	80]	V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time	_	71	_		T _J = 25°C	
tr	Rise Time	_	50	_	ns	I _C = 28A, V _{CC} = 720V	
ta(off)	Turn-Off Delay Time		150	220		$V_{GE} = 15V, R_{G} = 5.0\Omega$	
t _f	Fall Time	_	110	170		Energy losses include "tail" and	
Eon	Turn-On Switching Loss	_	2.63			diode reverse recovery.	
E _{off}	Turn-Off Switching Loss	_	1.34	_	mJ	See Fig. 9, 10, 18	
Ets	Total Switching Loss		3.97	5.3			
t _{a(on)}	Turn-On Delay Time	_	69	_		T _J = 150°C, See Fig. 11, 18	
tr	Rise Time	_	52	_	ns	I _C = 28A, V _{CC} = 720V	
t _{d(off)}	Turn-Off Delay Time	_	270	_		$V_{GE} = 15V, R_{G} = 5.0\Omega$	
tr	Fall Time		190	_		Energy losses include "tail" and	
Ets	Total Switching Loss	_	6.0	_	mJ	diode reverse recovery.	
LE	Internal Emitter Inductance	_	13		nΗ	Measured 5mm from package	
Cies	Input Capacitance	_	3300	_		V _{GE} = 0V	
Coes	Output Capacitance	_	200	_	рF	$V_{CC} = 30V$ See Fig. 7	
Cres	Reverse Transfer Capacitance		45	_		f = 1.0MHz	
trr	Diode Reverse Recovery Time	_	90	135	ns	T _J = 25°C See Fig.	
		_	164	245		T _J = 125°C 14 I _F = 16A	
l _{rr}	Diode Peak Reverse Recovery Current	_	5.8	10	Α	T _J = 25°C See Fig.	
		_	8.3	15		$T_J = 125^{\circ}C$ 15 $V_R = 200V$	
Qrr	Diode Reverse Recovery Charge	_	260	675	nC	T _J = 25°C See Fig.	
		_	680	1838]	T _J = 125°C 16 di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		120		A/µs	T _J = 25°C See Fig.	
	During to	_	76			T _J = 125°C 17	
		-	-				

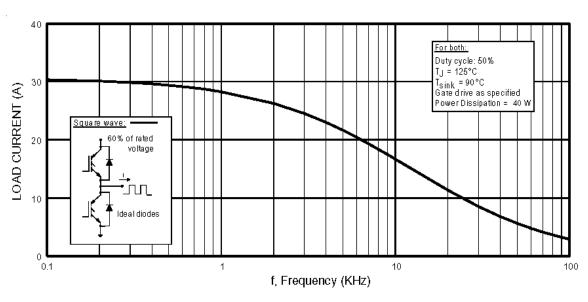


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

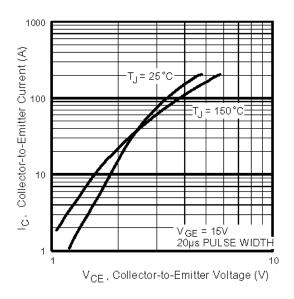


Fig. 2 - Typical Output Characteristics www.irf.com

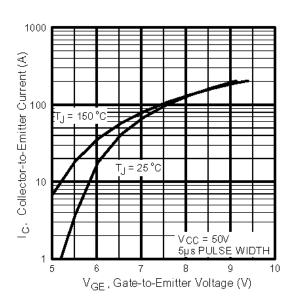
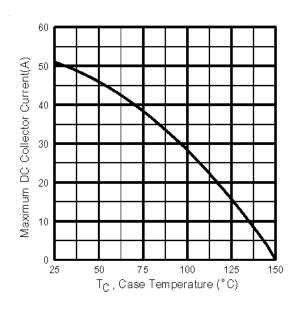



Fig. 3 - Typical Transfer Characteristics

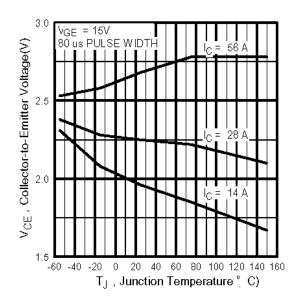


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature

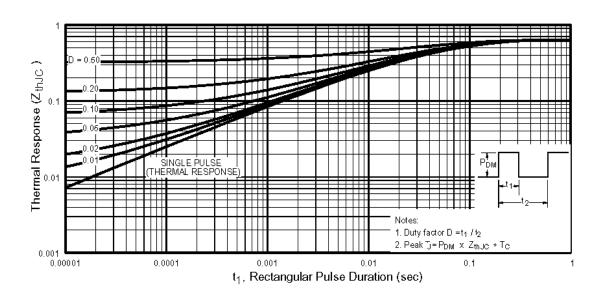


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

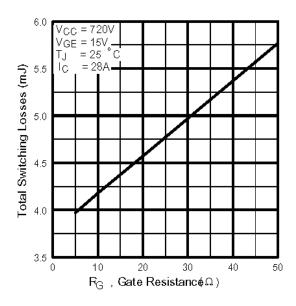
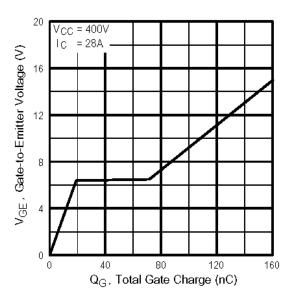
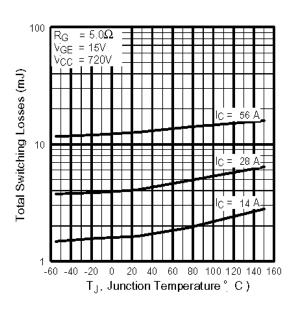




Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com

IRG4PF50WDPbF

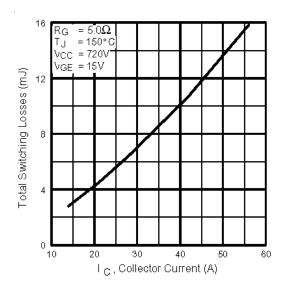


Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. Junction Temperature

International **TOR** Rectifier

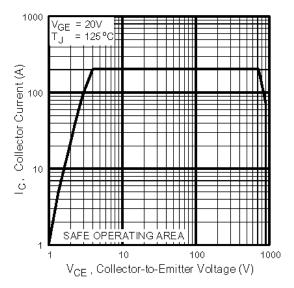


Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

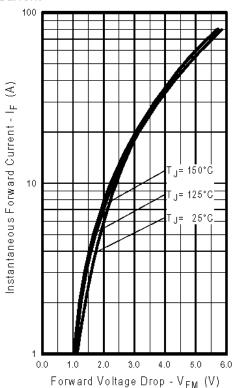
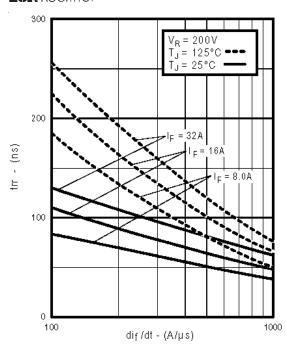



Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current

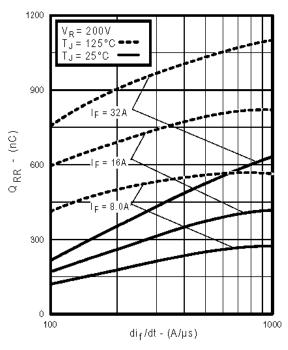
International TOR Rectifier

IRG4PF50WDPbF

V_R = 200V T_J = 125°C T_J = 25°C 30

I_F = 32A

I_F = 8.0A


I_F = 8.0A

100

di_f/dt - (A/μs)

 $\textbf{Fig. 14} \text{ - Typical Reverse Recovery vs. } di_{f}\!/dt$

Fig. 15 - Typical Recovery Current vs. di_f/dt

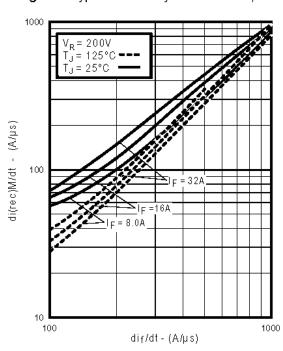


Fig. 16 - Typical Stored Charge vs. di_f/dt www.irf.com

Fig. 17 - Typical di_{(rec)M}/dt vs. di_f/dt

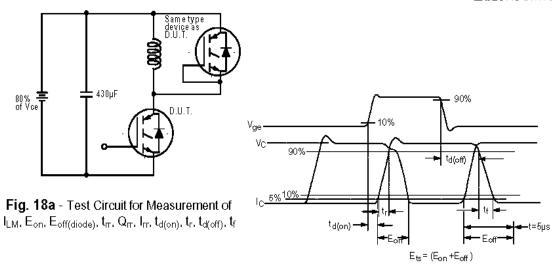


Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}}, t_{\text{d(off)}}, t_{\text{f}}$

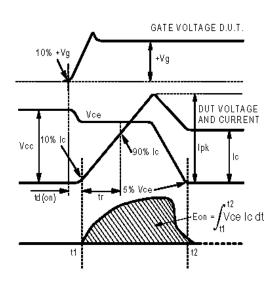


Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{on}},\,t_{d(\text{on})},\,t_{r}$

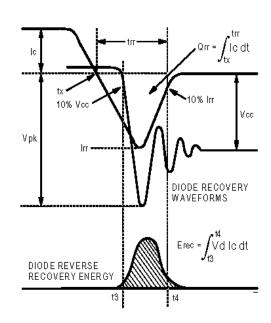


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining $\mathsf{E}_{\mathsf{rec}},\,t_{_{\!\Pi}},\,\mathsf{Q}_{_{\!\Pi}},\,\mathsf{I}_{_{\!\Pi}}$

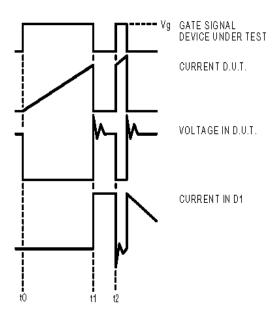


Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

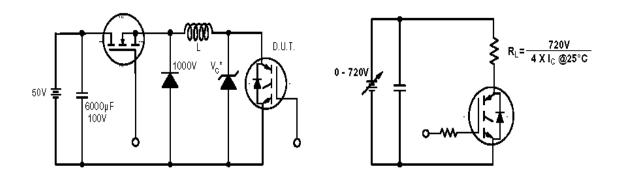
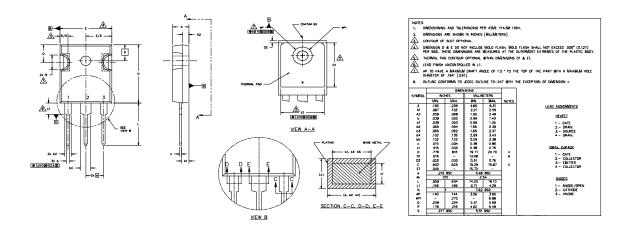


Figure 19. Clamped Inductive Load Test Circuit

Figure 20. Pulsed Collector Current Test Circuit

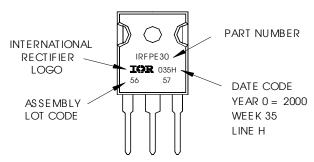

9

International

TOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/