

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

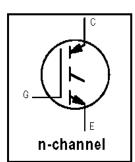
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

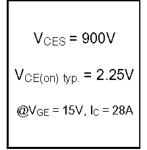
Contact us

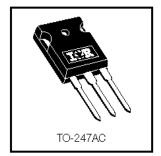
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


INSULATED GATE BIPOLAR TRANSISTOR


Features


- Optimized for use in Welding and Switch-Mode Power Supply applications
- Industry benchmark switching losses improve efficiency of all power supply topologies
- · 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
- Lead-Free

Benefits

- Lower switching losses allow more cost-effective operation and hence efficient replacement of largerdie MOSFETs up to 100kHz
- Of particular benefit in single-ended converters and Power Supplies 150W and higher
- Reduction in critical Eoff parameter due to minimal minority-carrier recombination coupled with low onstate losses allow maximum flexibility in device application

Apsolute Maximum Katings

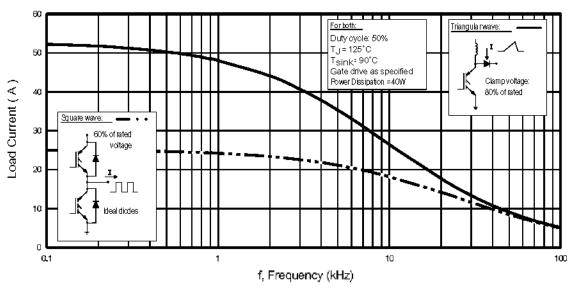
	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	900	V
Ic @ Tc = 25°C	Continuous Collector Current	51	
Ic @ Tc = 100°C	Continuous Collector Current	28	A
Icm	Pulsed Collector Current 👁	204	
I _{LM}	Clamped Inductive Load Current ②	204	
V_{GE}	Gate-to-Emitter Voltage	± 20	V
E _{ARV}	Reverse Voltage Avalanche Energy 🛭	186	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	78] "
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm from case)	

Thermal Resistance

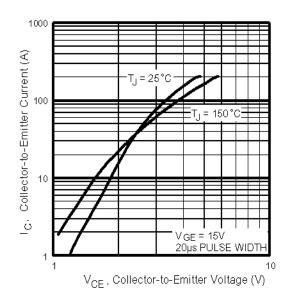
	Parameter	Тур.	Max.	Units
Rejc	Junction-to-Case	<u> </u>	0.64	
Recs	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
R _{eJA}	Junction-to-Ambient, typical socket mount	_	40	
Wt	Weight	6 (0.21)		g (oz)

International **TOR** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions
V _(BR) CES	Collector-to-Emitter Breakdown Voltage	900	_	_	V	$V_{GE} = 0V, I_{C} = 250 \mu A$
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	18			V	$V_{QE} = 0V$, $I_{C} = 1.0A$
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage		0.295		V/°C	$V_{QE} = 0V, I_{C} = 3.5 \text{mA}$
			2.25	2.7		$I_C = 28A$ $V_{GE} = 15V$
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.74		V	l _C = 60A See Fig.2, 5
			2.12	_]	I _C = 28A , T _{.I} = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}$, $I_C = 250 \mu A$
ΔV _{GE(th)} /ΔT _J	Temperature Coeff. of Threshold Voltage		-13		mV/°C	$V_{CE} = V_{GE}$, $I_C = 1.0 \text{mA}$
9fe	Forward Transconductance ®	26	39		S	V _{CE} ≥ 15V, I _C = 28A
læs	Zero Gate Voltage Collector Сипеnt		_	500	μA	$V_{CE} = 0V, V_{CE} = 900V$
· 423				2.0	μΛ	$V_{QE} = 0V$, $V_{CE} = 10V$, $T_{J} = 25$ °C
				5.0	mΑ	$V_{QE} = 0V, V_{CE} = 900V, T_J = 150^{\circ}C$
IGES	Gate-to-Emitter Leakage Current	_	<u> </u>	±100	nΑ	V _{GE} = ±20V

Switching Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	160	240		I _C = 28A
Qge	Gate - Emitter Charge (turn-on)		19	29	nC	V _{CC} = 400V See Fig. 8
Qgc	Gate - Collector Charge (turn-on)		53	80		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	29	_		
t_r	Rise Time	_	26		ns	T _J = 25°C
ta(off)	Turn-Off Delay Time	_	110	170	113	I _C = 28A, V _{CC} = 720V
tf	Fall Time	_	150	220		$V_{GE} = 15V, R_{G} = 5.0\Omega$
Eon	Turn-On Switching Loss		0.19	<u> </u>		Energy losses include "tail"
Eoff	Turn-Off Switching Loss	_	1.06	_	mJ	See Fig. 10, 11, 13, 14
Ets	Total Switching Loss		1.25	1.7		
t _{d(on)}	Turn-On Delay Time		28	<u> </u>		T _J = 150°C,
t _r	Rise Time	_	26	_	ns	I _C = 28A, V _{CC} = 720V
ta(off)	Turn-Off Delay Time		280	_	113	$V_{GE} = 15V, R_{G} = 5.0\Omega$
tr	Fall Time	_	90	<u> </u>		Energy losses include "tail"
Ets	Total Switching Loss	_	3.45	_	mЈ	See Fig. 13, 14
LE	Internal Emitter Inductance	_	13	<u> </u>	nН	Measured 5mm from package
Cies	Input Capacitance		3300			V _{GE} = 0V
Coes	Output Capacitance		200		рF	V _{CC} = 30V See Fig. 7
Cres	Reverse Transfer Capacitance		45	_		f = 1.0MHz

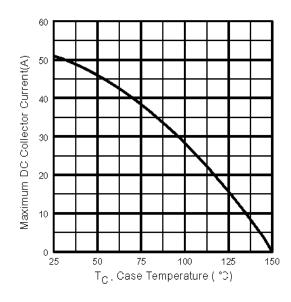
Notes:

- \odot Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- 2 $\mbox{ V_{CC} = }80\%(\mbox{V_{CES}})$, $\mbox{$V_{GE}$ = }20\mbox{V_{L} = }10\mu\mbox{H}$, $\mbox{$R_{G}$ = }5.0\Omega$, (See fig. 13a)
- Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
- S Pulse width 5.0µs, single shot.

Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I_{RMS} of fundamental; for triangular wave, I=I_{PK})

Ty = 150 °C

Ty = 25 °C


VCC = 50V

Sµs PULSE WIDTH

VGE , Gate-to-Emitter Voltage (V)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

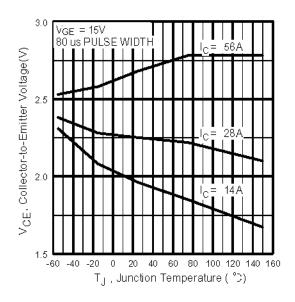


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature

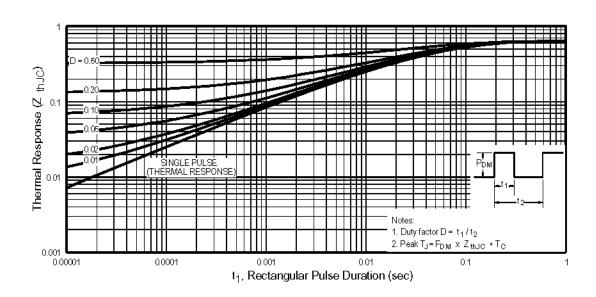
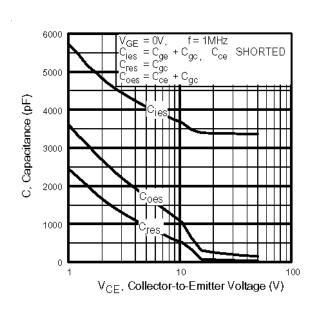
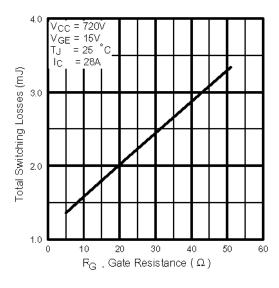



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **TOR** Rectifier


IRG4PF50WPbF

20 Vcc = 400V | 1c = 28A | 120 | 160 | 120 | 160 | Q_G. Total Gate Charge (nC)

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

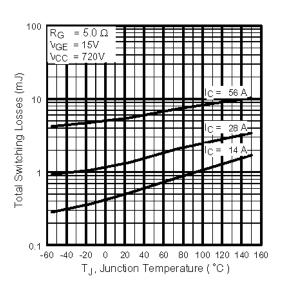
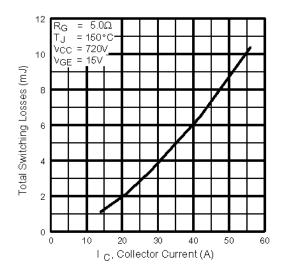
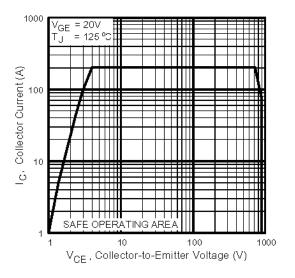




Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

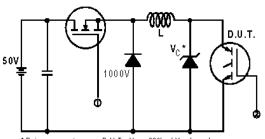

International
TOR Rectifier

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

* Driver same type as D.U.T.; Vc = 80% of Vce(max)

* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id.

 $R_L = \frac{720V}{4 \times 1_{\odot} @25^{\circ}C}$

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

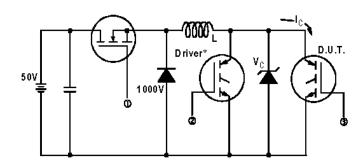


Fig. 14a - Switching Loss Test Circuit

> * Driver same type as D.U.T., VC = 720V

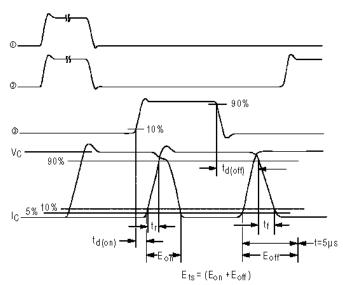
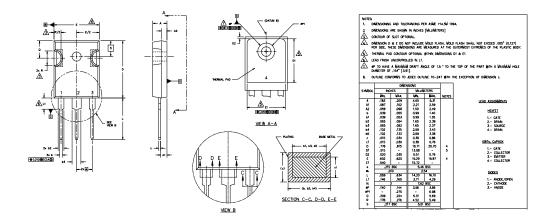
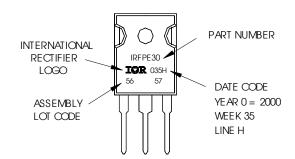



Fig. 14b - Switching Loss Waveforms

International IOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 05/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/