imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PD - 95402

International

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

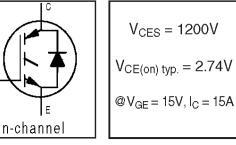
- High short circuit rating optimized for motor control, t_{sc} =10µs, V_{CC} = 720V , T_J = 125°C, V_{GE} = 15V
- Combines low conduction losses with high switching speed
- Tighter parameter distribution and higher efficiency than previous generations
- IGBT co-packaged with HEXFRED[™] ultrafast, ultrasoft recovery antiparallel diodes
- Lead-Free

Benefits

- Latest generation 4 IGBT's offer highest power density motor controls possible
- HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses
- This part replaces the IRGPH40KD2 and IRGPH40MD2 products
- · For hints see design tip 97003

Absolute Maximum Ratings

	Parameter	Max.	Units	
VCES	Collector-to-Emitter Voltage	1200	V	
I _C @ T _C = 25°C	Continuous Collector Current	30		
I _☉ @ T _☉ = 100°C	Continuous Collector Current	15		
I _{CM}	Pulsed Collector Current ①	60	A	
I _{LM}	Clamped Inductive Load Current @	60		
I _F @ T _C = 100°C	Diode Continuous Forward Current	8.0		
I _{FM}	Diode Maximum Forward Current	130		
t _{sc}	Short Circuit Withstand Time	10	μs	
V _{GE}	Gate-to-Emitter Voltage	± 20	V	
P _D @ T _C = 25°C	Maximum Power Dissipation	160	w	
P _D @ T _C = 100°C	Maximum Power Dissipation	65	VV	
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)		
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)		


Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{eJC}	Junction-to-Case - IGBT			0.77	
Rejc	Junction-to-Case - Diode			1.7	°C/W
R _{ecs}	Case-to-Sink, flat, greased surface		0.24		
R _{0JA}	Junction-to-Ambient, typical socket mount			40	
Wt	Weight		6 (0.21)		g (oz)

www.irf.com

Short Circuit Rated UltraFast IGBT

IRG4PH40KDPbF

G

6/17/04

1

	Parameter	Min.	Тур.	Max.	Units	Condition	s
V(BR)CES	Collector-to-Emitter Breakdown Voltage③	1200	_	_	V	V_{GE} = 0V, I_{C} = 250 μ A	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	—	0.37	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	-	2.74	3.4		I _C = 15A	$V_{GE} = 15V$
		-	3.29	_	V	I _C = 30A	See Fig. 2, 5
		—	2.53	—		$I_{\rm C} = 15A, T_{\rm J} = 150^{\circ}C$	
$V_{GE(th)}$	Gate Threshold Voltage	3.0	_	6.0		V_{CE} = V_{GE} , I_C = 250 μ A	
$\Delta V_{\text{GE(th)}}\!/\!\Delta T_J$	Temperature Coeff. of Threshold Voltage	-	-3.3	_	mV/°C	$V_{\rm CE}$ = $V_{\rm GE}$, $I_{\rm C}$ = 250 μ A	
g fe	Forward Transconductance @	8.0	12	—	S	$V_{\rm CE}$ = 100V, $I_{\rm C}$ = 15A	
ICES	Zero Gate Voltage Collector Current	—	_	250	μA	$V_{GE} = 0V, V_{CE} = 1200V$	ŗ
		-	_	3000		$V_{GE} = 0V, V_{CE} = 1200V$	', TJ = 150°C
V _{FM}	Diode Forward Voltage Drop	—	2.6	3.3	V	I _C = 8.0A	See Fig. 13
		_	2.4	3.1		$I_{\rm C} = 8.0$ A, $T_{\rm J} = 125^{\circ}$ C	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V	

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)	_	94	140		I _C = 15A	
Q _{ge}	Gate - Emitter Charge (tum-on)	_	14	22	nC	V _{CC} = 400V See Fig.8	
Qgc	Gate - Collector Charge (turn-on)	_	37	55		V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time	-	50	—			
t _r	Rise Time	—	31	—	ns	$T_{\rm J} = 25^{\circ}C$	
t _{d(off)}	Turn-Off Delay Time	—	96	140	115	$I_{\rm C}$ = 15A, $V_{\rm CC}$ = 800V	
t _f	Fall Time	—	220	330		V_{GE} = 15V, R_G = 10 Ω	
Eon	Turn-On Switching Loss	—	1.31	—		Energy losses include "tail"	
Eoff	Turn-Off Switching Loss	—	1.12	—	mJ	and diode reverse recovery	
Ets	Total Switching Loss	-	2.43	2.8		See Fig. 9,10,18	
t _{sc}	Short Circuit Withstand Time	10	-	—	μs	$V_{\rm CC} = 720V, T_{\rm J} = 125^{\circ}C$	
						V_{GE} = 15V, R_{G} = 10 Ω , V_{CPK} < 500V	
t _{d(on)}	Turn-On Delay Time	—	49	—		T _J = 150°C, See Fig. 10,11,18	
tr	Rise Time	-	33	_		$I_{\rm C} = 15A, V_{\rm CC} = 800V$	
t _{d(off)}	Turn-Off Delay Time	_	290	_	ns	$V_{GE} = 15V, R_{G} = 10\Omega,$	
t _f	Fall Time	—	440	—		Energy losses include "tail"	
Ets	Total Switching Loss	—	5.1		mJ	and diode reverse recovery	
L _E	Internal Emitter Inductance	-	13	—	nH	Measured 5mm from package	
Cies	Input Capacitance	—	1600	—		$V_{GE} = 0V$	
Coes	Output Capacitance	-	77	—	pF	$V_{\rm CC} = 30V$ See Fig. 7	
Cres	Reverse Transfer Capacitance	_	26			f = 1.0MHz	
t _{rr}	Diode Reverse Recovery Time	-	63	95	ns	TJ = 25°C See Fig.	
		—	106	160		T _J = 125°C 14 I _F = 8.0A	
l _{rr}	Diode Peak Reverse Recovery Current	-	4.5	8.0	Α	T _J = 25°C See Fig.	
		—	6.2	11		T _J = 125°C 15 V _R = 200V	
Q _{rr}	Diode Reverse Recovery Charge	—	140	380	nC	T _J = 25°C See Fig.	
		_	335	880		T _J = 125°C 16 di/dt = 200Aµs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	133		A/µs	T _J = 25°C See Fig.	
	During t _b	_	85	_		T _J = 125°C 17	
0						unum inf o	

International **IGR** Rectifier

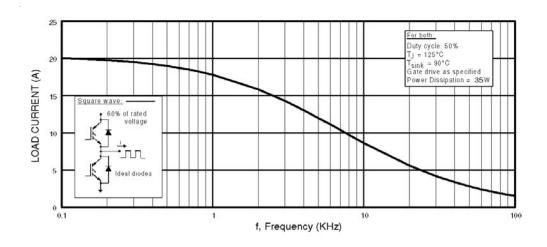


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

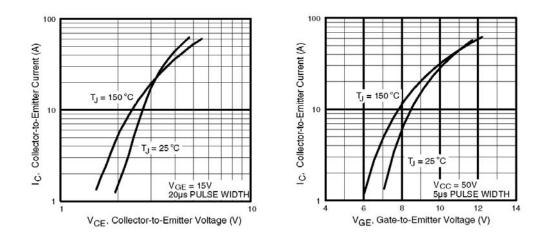


Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

International

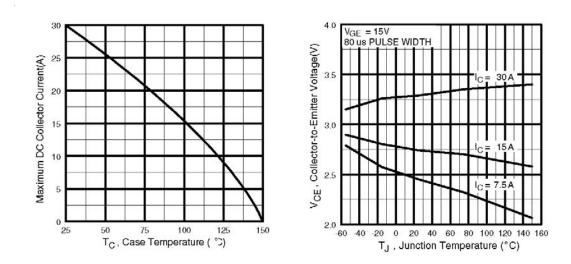


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

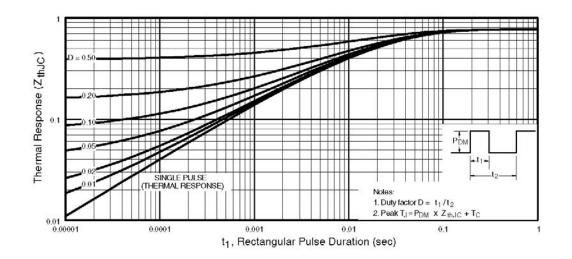
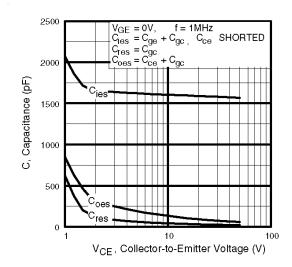



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **TOR** Rectifier

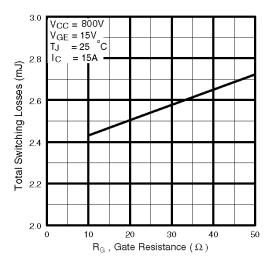


Fig. 9 - Typical Switching Losses vs. Gate Resistance

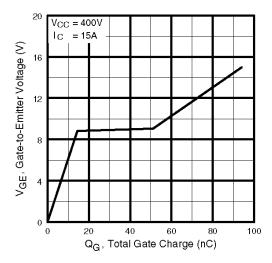


Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

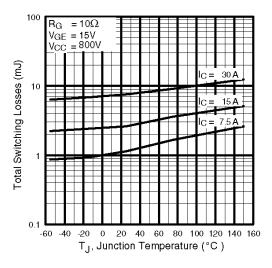


Fig. 10 - Typical Switching Losses vs. Junction Temperature

International

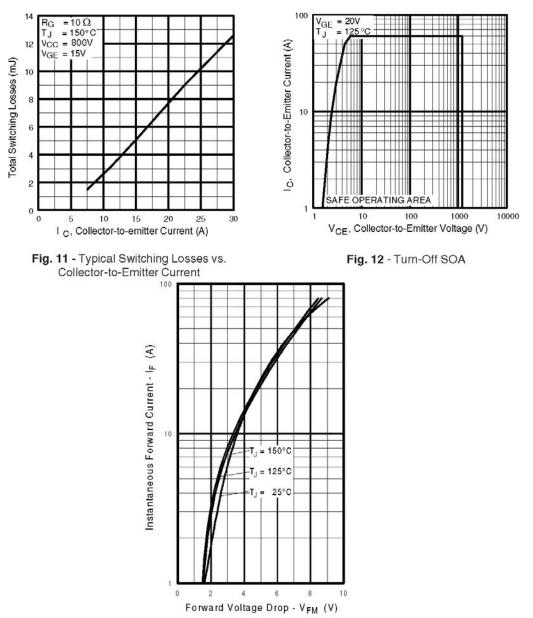


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

International **IGR** Rectifier

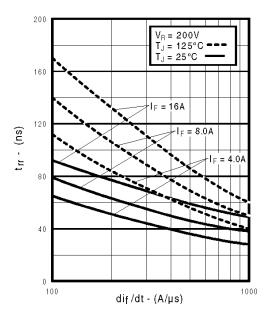


Fig. 14 - Typical Reverse Recovery vs. dif/dt

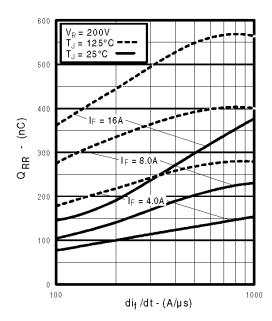


Fig. 16 - Typical Stored Charge vs. dif/dt

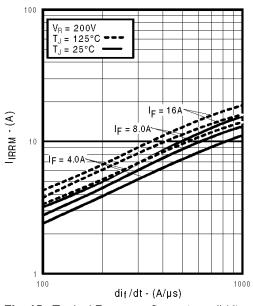


Fig. 15 - Typical Recovery Current vs. dif/dt

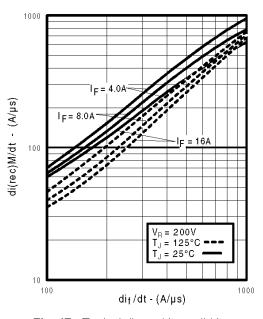


Fig. 17 - Typical di(rec)M/dt vs. dif/dt

International

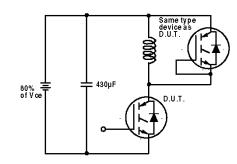


Fig. 18a - Test Circuit for Measurement of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(on)}$, t_r , $t_{d(off)}$, t_f

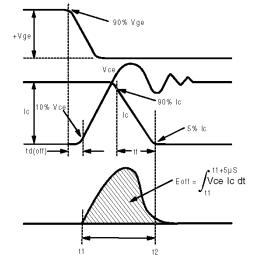
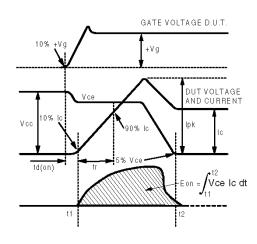
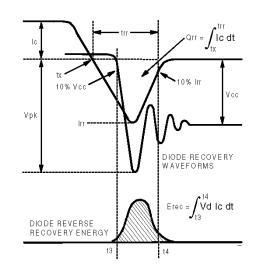




Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{off}, \ t_{d(off)}, \ t_{f}$

 $\begin{array}{c} \mbox{Fig. 18c} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{ Defining } E_{on}, \ t_{d(on)}, \ t_{r} \end{array}$

 $\label{eq:Fig.18d} \begin{array}{c} \mbox{Fig. 18d} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{Defining } E_{rec}, t_{rr}, \, Q_{rr}, \, l_{rr} \end{array}$

International

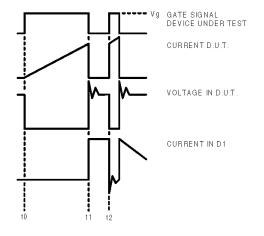
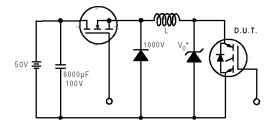



Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

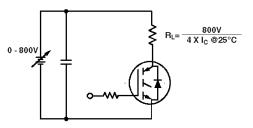
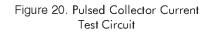
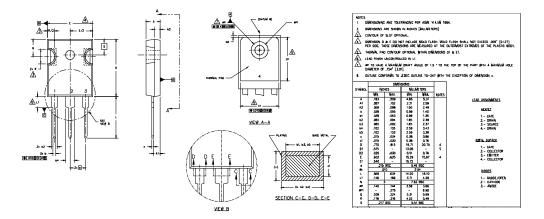
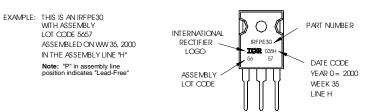



Figure 19. Clamped Inductive Load Test Circuit


International **IOR** Rectifier

Notes:


- \odot Repetitive rating: V_{GE}=20V; pulse width limited by maximum junction temperature (figure 20)
- $V_{CC} = 80\% (V_{CES}), V_{GE} = 20V, L = 10\mu H, R_G = 10\Omega (figure 19)$
- 3 Pulse width \leq 80µs; duty factor \leq 0.1%.
- ④ Pulse width 5.0µs, single shot.

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>