

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

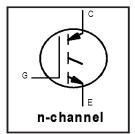
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

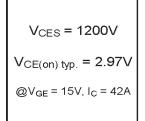
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

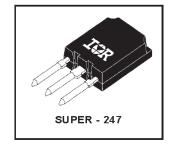
International Rectifier

IRG4PSH71KPbF

INSULATED GATE BIPOLAR TRANSISTOR


Short Circuit Rated UltraFast IGBT


Features


- Hole-less clip/pressure mount package compatible with TO-247 and TO-264, with reinforced pins
- High short circuit rating IGBTs, optimized for motorcontrol
- Minimum switching losses combined with low conduction losses
- Tightest parameter distribution
- · Creepage distance increased to 5.35mm
- Lead-Free

Benefits

- · Highest current rating IGBT
- Maximum power density, twice the power handling of the TO-247, less space than TO-264

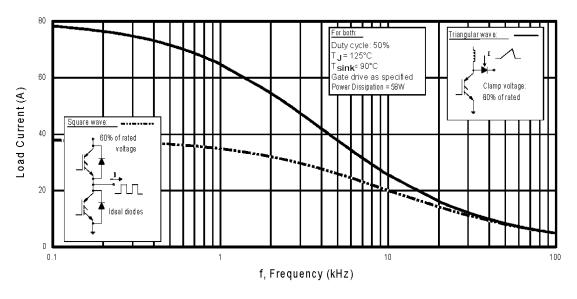
Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	78	
I _C @ T _C = 100°C	Continuous Collector Current	42	
I _{CM}	Pulsed Collector Current ①	156	Α
I _{LM}	Clamped Inductive Load Current @	156	
t _{SC}	Short Circuit Withstand Time	10	μs
V _{GE}	Gate-to-Emitter Voltage	± 20	V
E _{ARV}	Reverse Voltage Avalanche Energy 3	170	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	350	\w/
P _D @ T _C = 100°C	Maximum Power Dissipation	140	
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm from case)	7

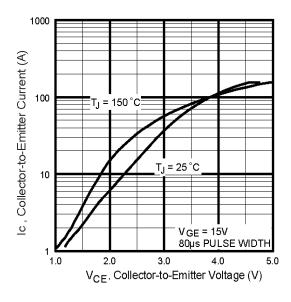
Thermal Resistance\ Mechanical

	Parameter	Min.	Тур.	Max.	Units
R ₀ JC	Junction-to-Case			0.36	
R _{0CS}	Case-to-Sink, flat, greased surface		0.24		°C/W
Raja	Junction-to-Ambient, typical socket mount			38	
	Recommended Clip Force	20.0(2.0)			N (kgf)
	Weight		6 (0.21)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Мах.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	$V_{GE} = 0V$, $I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage @	18			V	$V_{GE} = 0V, I_{C} = 1.0A$	
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage		1.1		V/°C	$V_{GE} = 0V$, $I_{C} = 10mA$	
	Collector-to-Emitter Saturation Voltage		2.97	3.9	V	I _C = 42A	V _{GE} = 15V
V _{CE(ON)}			3.44			I _C = 78A	See Fig.2, 5
, ,			2.60			I _C = 42A , T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)} /\!\Delta T_J$	Temperature Coeff. of Threshold Voltage		-12		mV/°C	$V_{CE} = V_{GE}, I_{C} = 1.5 \text{mA}$	
g fe	Forward Transconductance (§)	25	38		S	$V_{CE} = 50V$, $I_{C} = 42A$	
loes	Zero Gate Voltage Collector Current			500	μA	$V_{GE} = 0V, V_{CE} = 1200V$	
				2.0	μΑ [V_{GE} = 0V, V_{CE} = 10V, T	J = 25°C
				5.0	mΑ	V _{GE} = 0V, V _{CE} = 1200V	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	—		±100	nΑ	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)


$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		 					<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Parameter	Min.	Тур.	Max.	Units	Conditions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qg	Total Gate Charge (turn-on)	_	410	610		I _C = 42A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qge	Gate - Emitter Charge (turn-on)	_	47	70	nC	V _{CC} = 400V See Fig.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qgc	Gate - Collector Charge (turn-on)	_	145	220		V _{GE} = 15V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time	—	45	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tr	Rise Time	_	38	_	ne	$T_J = 25^{\circ}C$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(off)}	Turn-Off Delay Time	_	220	340	113	$I_{C} = 42A, V_{CC} = 960V$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _f	Fall Time	_	160	250		V_{GE} = 15V, R_{G} = 5.0 Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{on}	Turn-On Switching Loss	_	2.35	_		Energy losses include "tail"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{off}	Turn-Off Switching Loss	_	3.14	_	mJ	See Fig. 9,10,14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ets	Total Switching Loss	—	5.49	8.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tsc	Short Circuit Withstand Time	10	_	_	μs	V _{CC} = 720V, T _J = 125°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							V_{GE} = 20V, R_{G} = 5.0 Ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time	_	42	_		T _J = 150°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tr	Rise Time	_	41	_]	$I_{C} = 42A$, $V_{CC} = 960V$
	t _{d(off)}	Turn-Off Delay Time	_	460	_	115	V_{GE} = 15V, R_{G} = 5.0 Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _f	Fall Time	_	250	_	Ī	Energy losses include "tail"
	Ets	Total Switching Loss	_	11.5	_	mJ	See Fig. 10,11,14
C_{oes} Output Capacitance — 400 — pF $V_{\text{CC}} = 30V$ See Fig. 7	LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
	C _{ies}	Input Capacitance	_	5770	_		V _{GE} = 0V
C_{res} Reverse Transfer Capacitance — 100 — $f = 1.0 \text{MHz}$	Coes	Output Capacitance	_	400	_	pF	$V_{CC} = 30V$ See Fig. 7
	Cres	Reverse Transfer Capacitance	_	100	_		f = 1.0MHz

Notes:

- \odot Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- ~~ V $_{CC}$ = 80%(V $_{CES}),~V_{GE}$ = 20V, L = 10 $\mu H,~R_G$ = 5.0 $\Omega,$ (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature
- 9 Pulse width \leq 80µs; duty factor \leq 0.1%
- © Pulse width 5.0µs, single shot

Fig. 1 - Typical Load Current vs. Frequency (For square wave, $I=I_{PK}$) of fundamental; for triangular wave, $I=I_{PK}$)

1000

(Y) tue trong 100

T_J = 150 °C

T_J = 25 °C

V_{CC} = 50V

5µs PULSE WIDTH

V_{GE}, Gate-to-Emitter Voltage (V)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

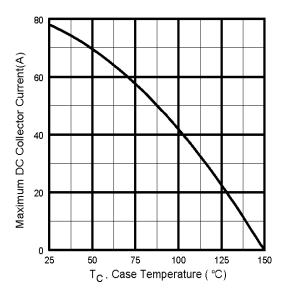
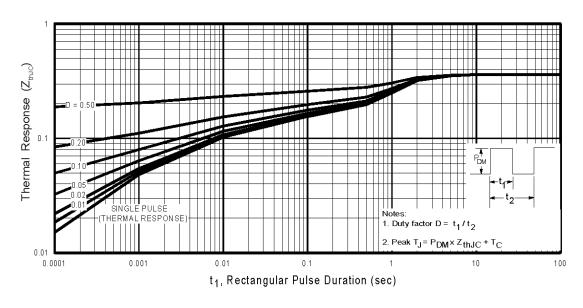
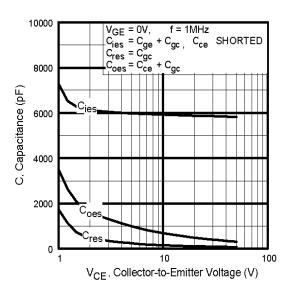
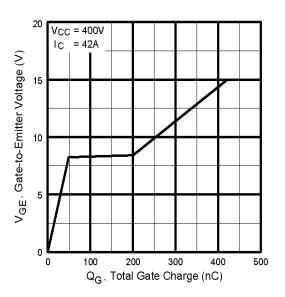


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. JunctionTemperature


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4PSH71KPbF

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

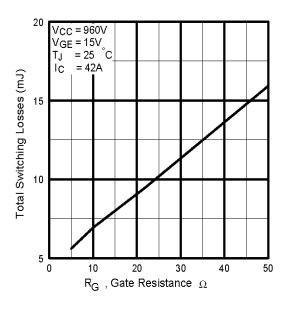


Fig. 9 - Typical Switching Losses vs. Gate Resistance

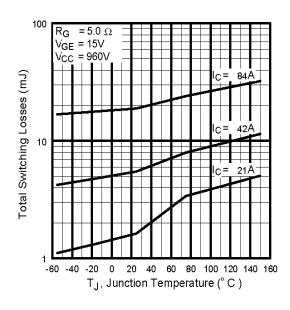
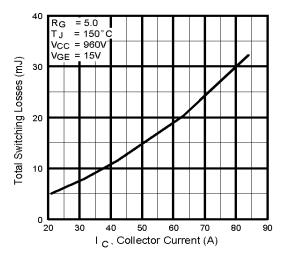
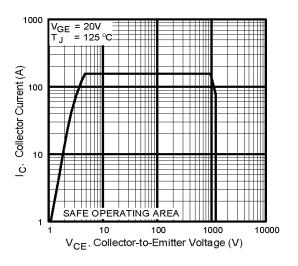




Fig. 10 - Typical Switching Losses vs. Junction Temperature

International

TOR Rectifier

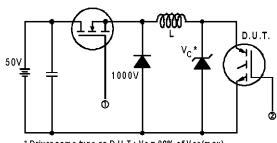


Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

International TOR Rectifier

IRG4PSH71KPbF

* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

0 - 960V R_L = $\frac{960V}{4 \times I_{\text{C}}@25^{\circ}\text{C}}$

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

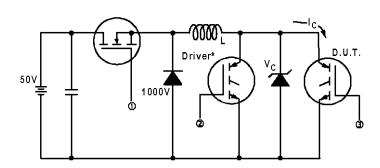


Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 960V

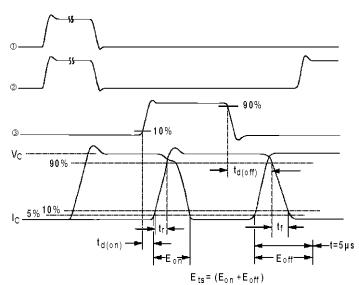
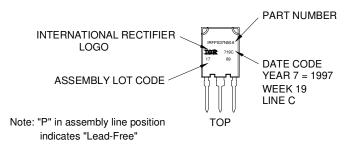


Fig. 14b - Switching Loss Waveforms

International


TOR Rectifier

Case Outline and Dimensions — Super-247

Super-247 (TO-274AA) Part Marking Information

EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/04