

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

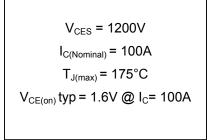
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



INSULATED GATE BIPOLAR TRANSISTOR

G L E n-channel

G C E Gate Collector Emitter

Applications

- Medium Power Drives
- UPS
- HEV Inverter
- Welding
- Induction Heating

Features -	→ Benefits
Low V _{CE(ON)} and switching Losses	High efficiency in a wide range of applications and switching frequencies
Square RBSOA and Maximum Junction Temperature 175°C	Improved Reliability due to rugged hard switching performance and higher power capability
Positive V _{CE (ON)} Temperature Coefficient	Excellent current sharing in parallel operation
Integrated Gate Resistor	Easier Paralleling with Integrated Gate Resistor

Dage next number	Dookogo Typo	Standard Pack		Ordereble next number	
Base part number	Package Type	Form	Quantity	Orderable part number	
IRG7CH75UEF-R	Die on film	Wafer	1	IRG7CH75UEF-R	

Mechanical Parameter

Die Size	10.4 x 10.4	mm ²			
Minimum Street Width	75	μm			
Emiter Pad Size (Included Gate Pad)	See Die Drawing				
Gate Pad Size	1.0 x 1.7	mm ²			
Area Total / Active	108.2/81.3				
Thickness	120	μm			
Wafer Size	200	mm			
Notch Position	0	Degrees			
Maximum-Possible Chips per Wafer	236 pcs				
Passivation Front side	Silicon Nitride	Silicon Nitride			
Front Metal	Al, Si (4µm)	Al, Si (4µm)			
Backside Metal	Al- Ti - Ni- Ag (1kA°-1kA°-4kA°-6kA°)				
Die Bond	Electrically conductive epoxy or solder				
Reject Ink Dot Size	0.25 mm diameter minimum				

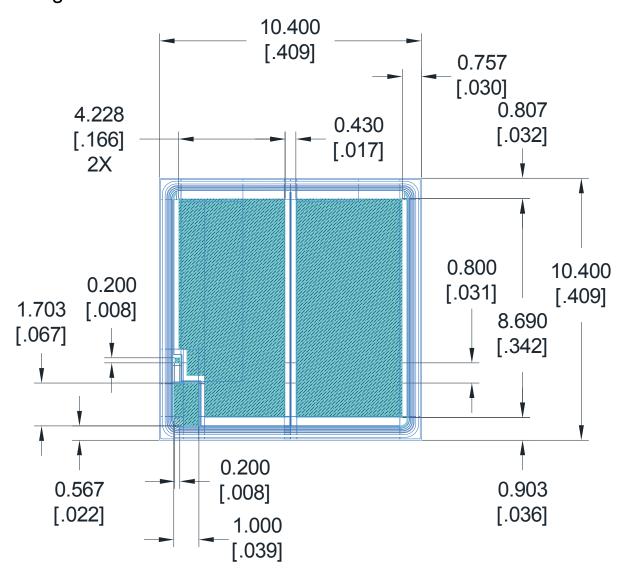
Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, T _J =25°C	1200	V
I _C	DC Collector Current	①	Α
I _{LM}	Clamped Inductive Load Current ②	400	Α
$V_{\sf GE}$	Gate Emitter Voltage	± 30	V
T _J , T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) . T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	1200				$V_{GE} = 0V, I_{C} = 100\mu A$ ③
$V_{CE(sat)}$	Collector-to-Emitter Saturated Voltage			2.0	V	$V_{GE} = 15V, I_{C} = 100A, T_{J} = 25^{\circ}C$
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	3.0		6.0		$I_C = 5.0 \text{mA}$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μΑ	$V_{CE} = 1200V, V_{GE} = 0V$
I _{GES}	Gate Emitter Leakage Current			± 400	nΑ	$V_{CE} = 0V, V_{GE} = \pm 30V$
R _{G INTERNAL}	Internal Gate Resistance	1.9	2.5	3.1	Ω	

Electrical Characteristics (Not subject to production test- Verified by design/characterization)


Electrical Characteristics (Not subject to production test- verified by design/characterization)						
	Parameter	Min.	Тур.	Max.	Units	Conditions
.,	0 1 1 5 1 0 1 1 1		1.6		.,,	$V_{GE} = 15V, I_{C} = 100A, T_{J} = 25^{\circ}C$ (4)
$V_{CE(sat)}$	Collector-to-Emitter Saturated Voltage		2.0		V	V _{GE} = 15V, I _C = 100A , T _J = 175°C④
						$T_J = 175^{\circ}C, I_C = 400A$
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE				V _{CC} = 960V, Vp ≤1200V
						Rg = 5Ω , V_{GE} = +20V to 0V
C _{iss}	Input Capacitance		12500			$V_{GE} = 0V$
C_{oss}	Output Capacitance		460		pF	V _{CE} = 30V
C_{rss}	Reverse Transfer Capacitance		320			f = 1.0MHz
Q_g	Total Gate Charge (turn-on)	_	770			I _C = 100A
Q_{ge}	Gate-to-Emitter Charge (turn-on)		90	_	nC	V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)		330	_		V _{CC} = 600V

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions ®
t _{d(on)}	Turn-On delay time	_	120	_		I _C = 100A, V _{CC} = 600V
t _r	Rise time	_	100	_		$R_G = 5\Omega$, $V_{GE} = 15V$, $L = 100 \mu H$
$t_{d(off)}$	Turn-Off delay time	_	890	_		$T_J = 25^{\circ}C$
t _f	Fall time	_	80	_	200	
$t_{d(on)}$	Turn-On delay time	_	80	_	ns	$I_{\rm C}$ = 100A, $V_{\rm CC}$ = 600V
t _r	Rise time	_	110			$R_G = 5\Omega$, $V_{GE} = 15V$, $L = 100\mu H$
$t_{d(off)}$	Turn-Off delay time	_	1060	_		T _J = 175°C
t _f	Fall time	_	140	_		

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WIDTH AND LENGTH TOLERANCE: -0.0508 [.002]
- 4. DIE THICKNESS = 0.120 [.0047]

REFERENCE: IRG7CH75UB-R

Notes:

①The current in the application is limited by T_{JMax} and the thermal properties of the assembly.

 $@V_{CC} = 80\% (V_{CES}), V_{GE} = 20V, L = 100\mu H, R_G = 5\Omega.$

③Refer to AN-1086 for guidelines for measuring V_{(BR)CES} safely

©Values influenced by parasitic L and C in measurement

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales.

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non- standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the
 assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office or email your enquiry to http://die.irf.com

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/