

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

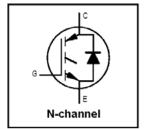
Contact us

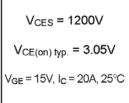
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

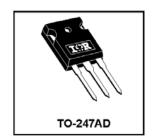
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE


UltraFast CoPack IGBT


Features


- UltraFast Non Punch Through (NPT) Technology
- Low Diode V_F (1.67V Typical @ 20A & 25°C)
- 10 µs Short Circuit Capability
- · Square RBSOA
- · UltraSoft Diode Recovery Characteristics
- Positive $V_{\text{CE(on)}}$ Temperature Coefficient
- Extended Lead TO-247AD Package
- Lead-Free

Benefits

- · Benchmark Efficiency Above 20KHz
- Optimized for Welding, UPS, and Induction Heating Applications
- Rugged with UltraFast Performance
- Low EMI
- · Significantly Less Snubber Required
- · Excellent Current Sharing in Parallel Operation
- · Longer Leads for Easier Mounting

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current (Fig.1)	40	
I _C @ T _C = 100°C	Continuous Collector Current (Fig.1)	20	
I _{CM}	Pulsed Collector Current (Fig.3, Fig. CT.5)	120	
I _{LM}	Clamped Inductive Load Current(Fig.4, Fig. CT.2)	120	A
I _F @ T _C = 100°C	Diode Continuous Forward Current	20	
I _{FM}	Diode Maximum Forward Current	120	
V _{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation (Fig.2)	300	w
P _D @ T _C = 100°C	Maximum Power Dissipation (Fig.2)	120	• • • • • • • • • • • • • • • • • • • •
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300, (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{BJC}	Junction-to-Case - IGBT			0.42	
Reuc	Junction-to-Case - Diode	_	_	0.83	°C/W
R _{ecs}	Case-to-Sink, flat, greased surface		0.24]
R _{B,IA}	Junction-to-Ambient, typical socket mount			40	
W _t	Weight		6 (0.21)		g (oz)
Zeuc	Transient Thermal Impedance Junction-to-Cas	Transient Thermal Impedance Junction-to-Case (Fig.24)			

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Fig.
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	V _{GE} = 0V,I _c = 250 μA	
$\Delta V_{(BR)CES} / \Delta T_j$	Temperature Coeff. of Breakdown Voltage		+1.2		V/°C	$V_{GE} = 0V$, $I_c = 1 \text{ mA} (25 - 125 °C)$	
			3.05	3.45		I _C = 20A, V _{GE} = 15V	5, 6
	Collector-to-Emitter Saturation		3.37	3.80]	Ic = 25A, VGE = 15V	7, 9
V _{CE(on)}	Voltage		4.23	4.85	V	I _C = 40A, V _{GE} = 15V	10
			3.89	4.50		Ic = 20A, VGE = 15V, TJ = 125°C	11
			4.31	5.06		Ic = 25A, VGE = 15V, TJ = 125°C	
V _{GE(th)}	Gate Threshold Voltage	4.0	5.0	6.0	V	V _{CE} = V _{GE} , I _C = 250 μA	9,10,11,12
ΔV _{GE(th)} / ΔTj	Temperature Coeff. of Threshold Voltage		- 1.2		mV/°C	V _{CE} = V _{GE} , I _C = 1 mA (25 -125 °C)	
g fe	Forward Transconductance	13.6	15.7	17.8	s	V _{CE} = 50V, I _C = 20A, PW=80μs	
				250		V _{GE} = 0V, V _{CE} = 1200V	
Ices	Zero Gate Voltage Collector Current		420	750	μA	V _{GE} = 0V, V _{CE} = 1200V, T _J =125°C	1
			1482	2200		VGE = 0V, VCE = 1200V, TJ = 150°C	
			1.67	1.96		I _C = 20A	
V _{FM}	Diode Forward Voltage Drop		1.76	2.06	V	I _C = 25A	8
			1.73	2.03]	I _C = 20A, T _J = 125°C	1
			1.87	2.18		I _C = 25A, T _J = 125°C	
Iges	Gate-to-Emitter Leakage Current			±100	nΑ	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Fig.
Q _g	Total Gate charge (turn-on)		169	254		Ic = 20A	23
Q _{ge}	Gate - Emitter Charge (turn-on)		24	36	nC	Vcc = 600V	CT1
Qgc	Gate - Collector Charge (turn-on)		82	126]	V _{GE} = 15V	
E _{on}	Turn-On Switching Loss		850	1050		Ic = 20A, Vcc = 600V	CT4
E _{off}	Turn-Off Switching Loss		425	650	μJ	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200\mu H$	WF1
E _{tot}	Total Switching Loss		1275	1800		T _J = 25°C, Energy losses include tail and diode reverse recovery	WF2
E _{on}	Turn-on Switching Loss		1350	1550		Ic = 20A, Vcc = 600V	13, 15
E _{off}	Turn-off Switching Loss		610	875	μJ	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200\mu H$	CT4
E _{tot}	Total Switching Loss		1960	2425		T _J = 125°C, Energy losses include tail and diode reverse recovery	WF1 & 2
td(on)	Turn - on delay time		50	65		Ic = 20A, Vcc = 600V	14, 16
tr	Rise time		20	30	ns	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200\mu H$	CT4
td(off)	Turn - off delay time		204	230]	T _J = 125°C	WF1
tf	Fall time		24	35			WF2
C ies	Input Capacitance		2200			V _{GE} = 0V	
Coes	Output Capacitance		210		рF	Vcc = 30V	22
C res	Reverse Transfer Capacitance		85			f = 1.0 MHz	
RBSOA	Reverse bias safe operating area	FULL SQUARE			$T_{\rm J} = 150^{\circ}{\rm C}$, Ic = 120A $V_{\rm CC} = 1000{\rm V}$, $V_{\rm P} = 1200{\rm V}$ $Rg = 5\Omega$, $V_{\rm GE} = +15{\rm V}$ to 0V	4 CT2	
SCSOA	Short Circuit Safe Operating Area	10			us	T _J = 150°C V _{CC} = 900V, V _P = 1200V	CT3 WF4
		'			[]	$Rg = 5\Omega$, $V_{GE} = +15V$ to $0V$	
Erec	Reverse recovery energy of the diode	$\overline{}$	1600	2100	μJ	T _J = 125°C	17,18,19
trr	Diode Reverse recovery time		300		ns	Vcc = 600V, Ic = 20A	20, 21
Irr	Peak Reverse Recovery Current		32	36	Α	$V_{GE} = 15V$, $Rg = 5\Omega$, $L = 200\mu H$	CT4, WF3
Le	Internal Emitter Inductance	Ī	13		nН	Measured 5 mm from the package.	

International TOR Rectifier

IRGP20B120UD-EP

Fig.1 - Maximum DC Collector Current vs. Case Temperature

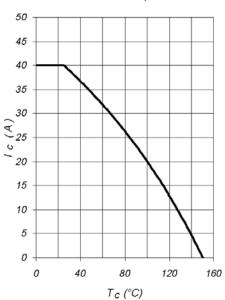


Fig.3 - Forward SOA

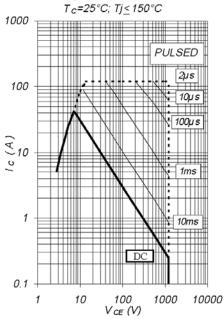


Fig.2 - Power Dissipation vs. Case Temperature

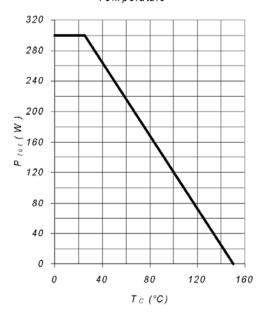


Fig.4 - Reverse Bias SOA

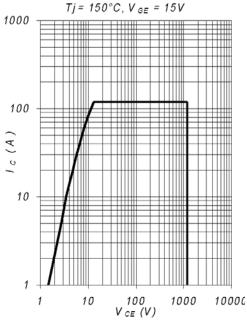


Fig.5 - Typical IGBT Output
Characteristics Tj = -40 °C; $tp = 300 \mu s$ 60
55 $V_{GE} = 18V$ 50 $V_{GE} = 15V$ $V_{GE} = 12V$ 40 $V_{GE} = 8V$

Fig.7 - Typical IGBT Output Characteristics Tj=125°C; tp=300µs

3 V _{CE} (V)

5

15

10

5

0

0

1

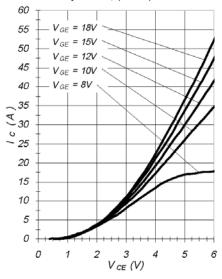
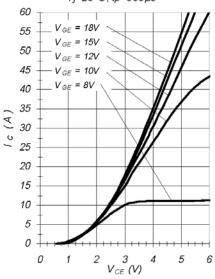
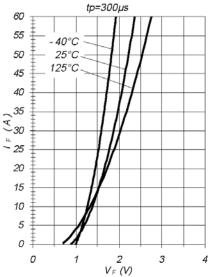
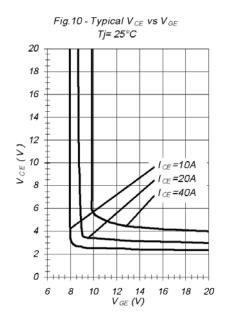
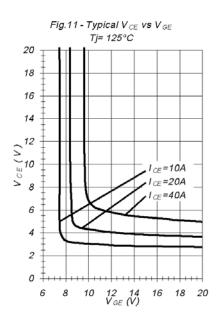


Fig.6 - Typical IGBT Output Characteristics Tj=25°C; tp=300µs


Fig.8 - Typical Diode Forward Characteristic



International Rectifier

IRGP20B120UD-EP

Fig.9 - Typical V CE vs V GE Tj= -40°C 20 18 16 14 (A) 10 N 8 1_{CE} =10A 1_{CE} =20A 8 1_{CE} =40A 6 4 2 0 12 14 16 18 20 V_{GE} (V) 8 10 6

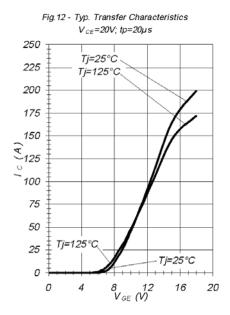


Fig.13 - Typical Energy Loss vs Ic Tj=125°C; L=200 μ H; V_{CE} =600V; Rg=22 Ω ; V_{GE} =15V

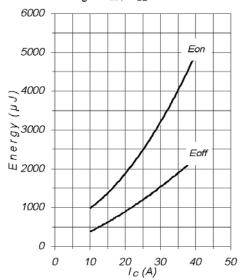


Fig. 15 - Typical Energy Loss vs Rg Tj=125°C; L=200 μ H; V_{CE} =600V; I_{CE} =20A; V_{GE} =15V

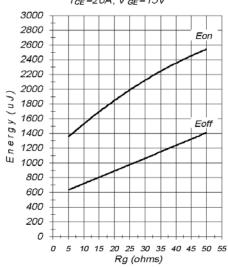
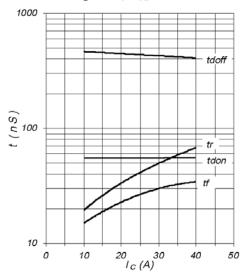
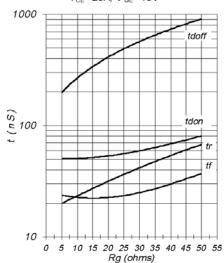
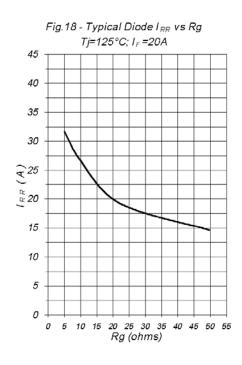
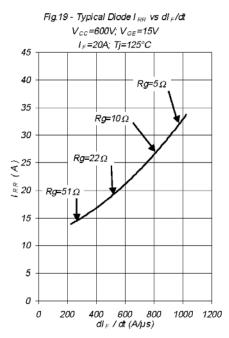
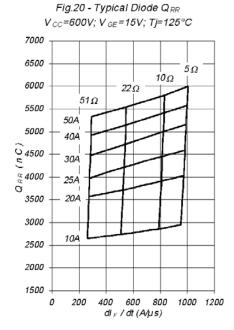


Fig.14 - Typical Switching Time vs lc Tj=125°C; $L=200\mu H$; $V_{CE}=600V$; $Rg=22 \Omega$; $V_{GE}=15V$



Fig.16 - Typical Switching Time vs Rg $Tj=125^{\circ}C$; $L=200\mu H$; $V_{CE}=600V$; $I_{CE}=20A$; $V_{GE}=15V$




International TOR Rectifier

IRGP20B120UD-EP

International TOR Rectifier

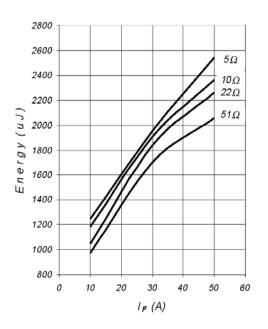


Fig.22 - Typical Capacitance vs V_{CE} V_{GE} =0V; f=1MHz

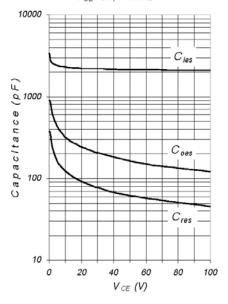
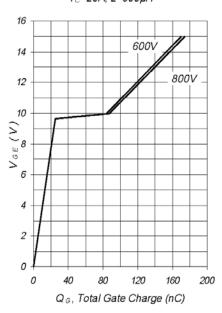



Fig.23 - Typ. Gate Charge vs. V_{GE} I_C =20A; L=600 μ H

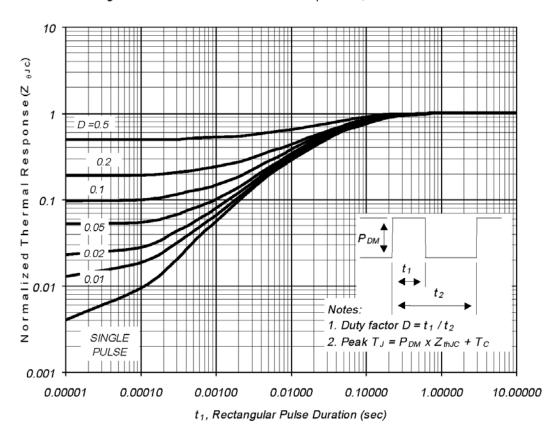


Fig.24 - Normalized Transient Thermal Impedance, Junction-to-Case

Fig. CT.1 - Gate Charge Circuit (turn-off)

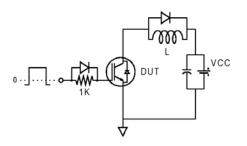


Fig. CT.2 - RBSOA Circuit

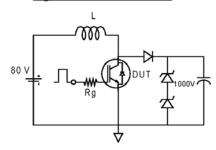


Fig. CT.3 - S.C. SOA Circuit

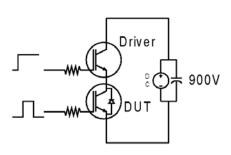


Fig. CT.4 - Switching Loss Circuit

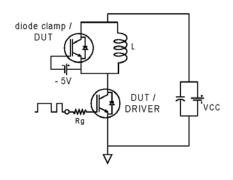


Fig. CT.5 - Resistive Load Circuit

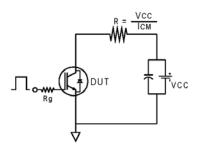


Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4

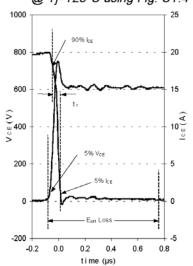


Fig. WF.3 - Typ. Diode Recovery Waveform @ Tj=125°C using Fig. CT.4

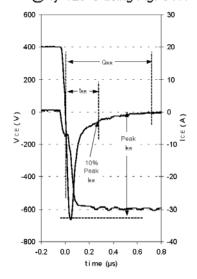


Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125°C using Fig. CT.4

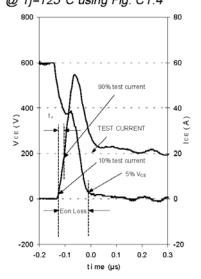
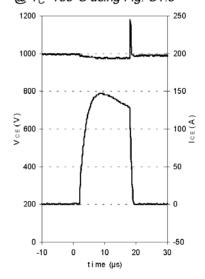
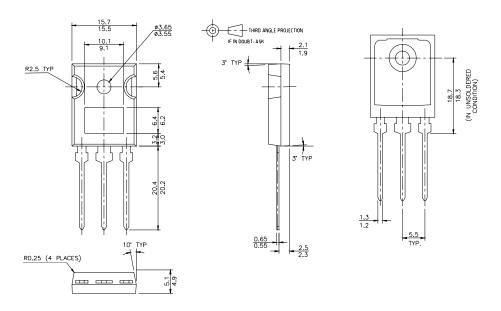
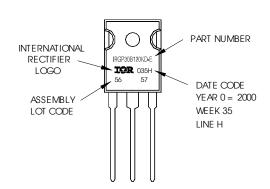




Fig. WF.4 - Typ. S.C. Waveform $@T_C=150^{\circ}\text{C using Fig. CT.3}$

International IOR Rectifier

TO-247AD Package Outline

TO-247AD Part Marking Information


EXAMPLE: THIS IS AN IRGP30B120KD-E WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/