

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

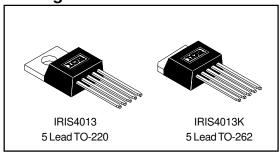
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

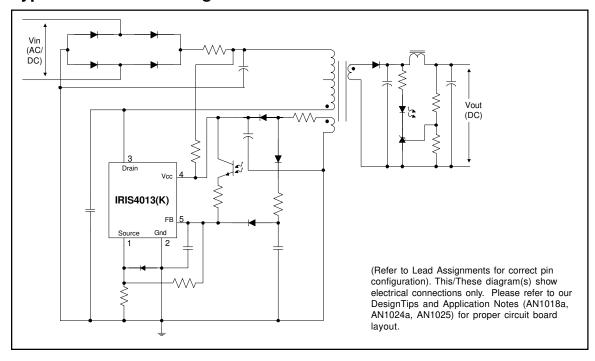
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


IRIS4013(K)

INTEGRATED SWITCHER

Features

- Primary current mode control, and secondary voltage mode control
- Vcc Over-voltage protection (latched)
- Over-current & over-temperature protection
- Quasi resonant, variable frequency operation
- 5 pin TO-220 and TO-262 package
- 1.95Ω Rds(on) max/ 650V MOSFET
- Fully Characterized Avalanche Energy

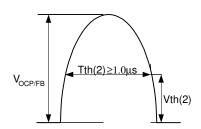

Packages

Descriptions

The IRIS4013(K) is a dual mode voltage and current controller combined with a MOSFET in a single package. The IRIS4013(K) is designed for use in AC/DC switching power supplies up to 230VAC nominal input, and is capable of powers up to 120W for a universal input. The device operates on a quasi-resonant or Pulse Ratio Control (PRC) basis, and thereby variable frequency operation.

Typical Connection Diagram

Absolute Maximum Ratings


Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to terminals stated, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

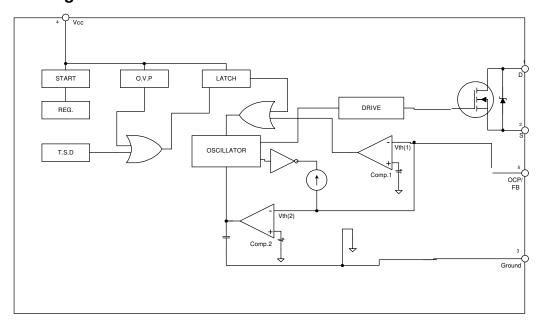
Symbol	Definition	Terminals	Max. Ratings	Units	Note
I _D peak	Peak drain current	3-1	12.8		Single pulse
I _D max	Maximum switching current	3-1	5.1	А	V ₂₋₃ = 0.78V Ta=-20-+125°C
E _{AS}	Single pulse avalanche energy	3-1	397	mJ	single pulse I _L peak=5.1A
V _{CC}	Power supply voltage	4-3	35	V	
V _{TH}	OCP/FB terminal voltage	5-2	6	V	
P _{D1}	Power dissipation for MOSFET	3-1	179		With infinite heatsink
			1.3	W	Without heatsink
P _{D2}	Power dissipation for control part (MIC)	4-2	0.8		Specified by V _{IN} x I _{IN}
Rth _{JC}	Thermal resistance, junction to case	_	0.7	°C/W	
TJ	Junction temperature	_	-40-125		
T _S	Storage temperature	_	-40-125		
Tf	Internal frame temperature in operation	_	-20-125	°C	Refer to recommended operating temperature
T _{OP}	Ambient operating temperature	_	-20-125		
TL	Lead temp. (soldering, 10 seconds)	_	300		

Recommended Operating Conditions

Time for input of quasi resonant signals.

For the Quasi resonant signal inputted to the $V_{\text{OCP/FB}}$ terminal at the time of quasi resonant operation, the signal should be wider thant Tth(2)

Electrical Characteristics (for Control IC) $V_{\rm CC}$ = 18V, ($T_{\rm A}$ = 25°C) unless otherwise specified.

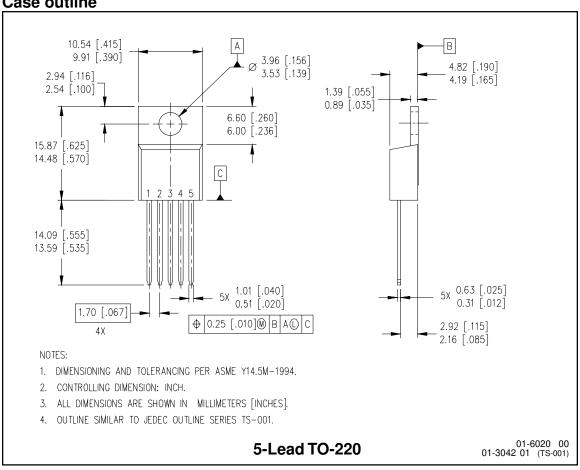

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	14.4	16	17.6	V	
V _{CCHYS}	V _{CC} supply undervoltage lockout hysteresis	5.4	6.0	6.6	V	
I _{QCCUV}	UVLO mode quiescent current	_	_	100	μΑ	V _{CC} < V _{CCUV+}
I _{QCC}	Quiescent operating V _{CC} supply current	_	_	30	mA	
T _{OFF/(MAX)}	Maximum OFF time	40	_	60		
T _{TH(2)}	Minimum input pulse width for quasi resonant signals	_	_	1.0	μsec	
T _{OFF/(MIN)}	Minimum OFF time	_	_	1.5		
V _{TH(1)}	OCP/FB terminal threshold voltage 1	0.68	0.73	0.78	V	
V _{TH(2)}	OCP/FB terminal threshold voltage 2	1.3	1.45	1.6	\ \ \	
I _{OCP/FB}	OCP/FB terminal sink current	1.1	1.35	1.7	mA	
V _{CC(OVP)}	V _{CC} overvoltage protection limit	20.5	22.5	24.5	V	
I _{IN(H)}	Latch circuit sustaining current	_	_	400	μΑ	
V _{IN(LaOFF)}	Latch circuit reset voltage	6.6	_	8.4	V	
T _{J(TSD)}	Thermal shutdown activation temperature	140	_	_	°C	

Electrical Characteristics (for MOSFET)

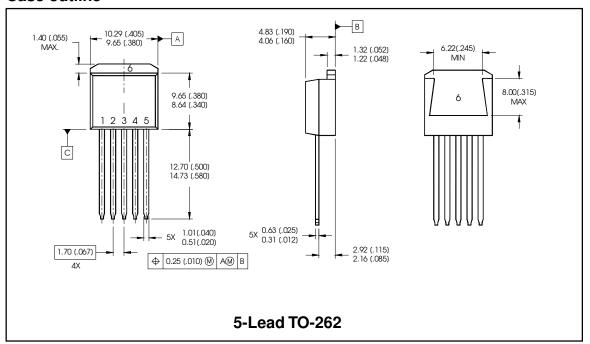
 $(T_A = 25$ °C) unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{DSS}	Drain-to-source breakdown voltage	650	_	_	٧	
I _{DSS}	Drain leakage current	_	_	300	μΑ	Vds=650V, V _{GS} =0V
R _{DS(ON)}	On-resistance	_	_	1.95	Ω	V ₃₋₁ =10V, I _D =5.1A
t _r	Rise time (10% to 90%)	_	_	250	ns	
THj-C	Thermal resistance	_	_	0.7	°C/W	Between junction
						and case

Block Diagram


Lead Assignments	Pin #	Symbol	Description
	1	S	MOSFET Source terminal
	2	Ground	Ground terminal
	3	D	MOSFET Drain terminal
	4	Vcc	Control circuit supply voltage
1 2 3 4 5	5	OCP/FB	Overcurrent detection, and Voltage mode control feedback signal

Other Functions


O.V.P. - Overvoltage Protection Circuit

T.S.D. - Thermal Shutdown Circuit

Case outline

Case outline

International

IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 10/16/2001