

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

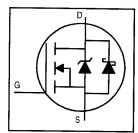
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

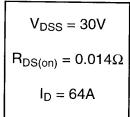
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

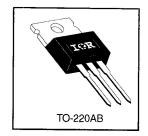
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International Rectifier

IRL3103D1PbF


FETKY™ MOSFET & SCHOTTKY RECTIFIER


- Copackaged HEXFET[®] Power MOSFET and Schottky Diode
- Generation 5 Technology
- Logic Level Gate Drive
- Minimize Circuit Inductance
- Ideal For Synchronous Regulator Application
- Lead-Free


Description

The FETKY family of copackaged HEXFET power MOSFETs and Schottky Diodes offer the designer an innovative board space saving solution for switching regulator applications. A low on resistance Gen 5 MOSFET with a low forward voltage drop Schottky diode and minimized component interconnect inductance and resistance result in maximized converter efficiencies.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V3	64	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V3	45	Α .
I _{DM}	Pulsed Drain Current ①③	220	
$P_D @ T_A = 25^{\circ}C$	Power Dissipation	2.0	W
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	89	W
	Linear Derating Factor	0.56	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	°C
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case		1.4	
$R_{\theta JA}$	Junction-to-Ambient		62	°C/W

IRL3103D1PbF

MOSFET Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			٧	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.037		V/°C	Reference to 25°C, I _D = 1mA@
D	Chatha Daniel and Chatha			0.014		V _{GS} = 10V, I _D = 34A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.019	Ω	V _{GS} = 4.5V, I _D = 28A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	23	_		S	V _{DS} = 25V, I _D = 32A③
I _{DSS}	Drain-to-Source Leakage Current			0.10		$V_{DS} = 30V, V_{GS} = 0V$
				22	mA	V _{DS} = 24V, V _{GS} = 0V, T _J = 125°C
1	Gate-to-Source Forward Leakage			100		V _{GS} = 16V
GSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Q_g	Total Gate Charge			43		I _D = 32A
Q_{gs}	Gate-to-Source Charge			14	nC	$V_{DS} = 24V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			23		V _{GS} = 4.5V, See Fig. 6 ②
t _{d(on)}	Turn-On Delay Time		9.0			V _{DD} = 15V
tr	Rise Time		210			I _D = 32A
t _{d(off)}	Turn-Off Delay Time		20		ns	$R_G = 3.4\Omega, V_{GS} = 4.5V$
t _f	Fall Time		54			R _D = 0.43 Ω, ②③
L _D	Internal Drain Inductance		4.5		nΗ	Between lead, p
-0						6mm (0.25in.)
L _S	Internal Source Inductance		7.5	—		from package
					İ	and center of die contact
C _{iss}	Input Capacitance		1900			$V_{GS} = 0V$
Coss	Output Capacitance		810			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		240		pF	f = 1.0MHz, See Fig. 5
Ciss	Input Capacitance		3500			$V_{GS} = 0V$, $V_{DS} = 0V$

Body Diode & Schottky Diode Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _F (AV)	(Schottky)			2.0		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			220	Α	integral reverse p-n junction and Schottky diode.
V _{SD1}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}\text{C}, I_S = 32\text{A}, V_{GS} = 0\text{V}$
V _{SD2}	Diode Forward Voltage	-		0.50	V	T _J = 25°C, I _S = 1.0A, V _{GS} = 0V ②
t _{rr}	Reverse Recovery Time		51	77	ns	T _J = 25°C, I _F = 32A
Q _{rr}	Reverse Recovery Charge		49	73	nC	di/dt = 100A/μs ②
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 10)

³ Uses IRL3103 data and test conditions

② Pulse width \leq 300 μ s; duty cycle \leq 2%.

IRL3103D1PbF

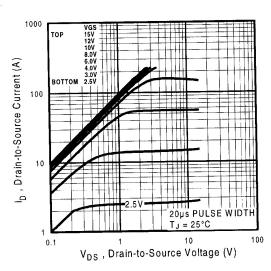


Fig 1. Typical Output Characteristics

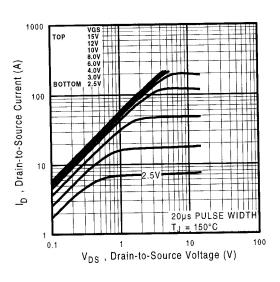


Fig 2. Typical Output Characteristics

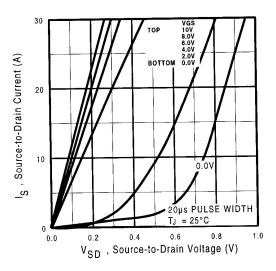


Fig 3. Typical Reverse Output Characteristics

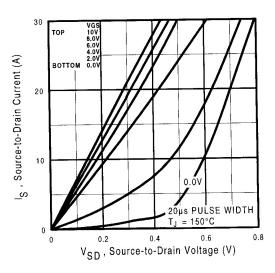
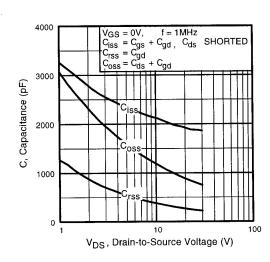
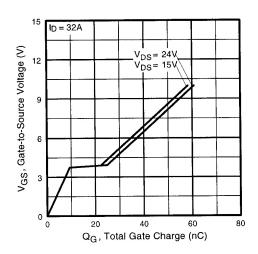




Fig 4. Typical Reverse Output Characteristics

www.irf.com 3

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Maximum Drain Current Vs. Case Temperature

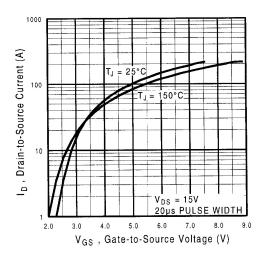


Fig 8. Typical Transfer Characteristics

4 www.irf.com

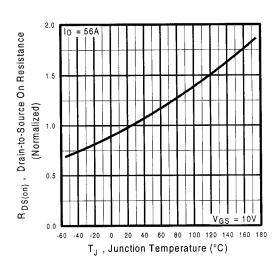


Fig 9. Normalized On-Resistance Vs. Temperature

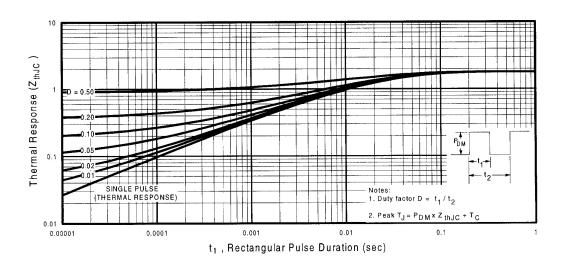
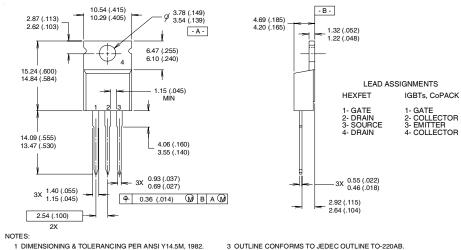



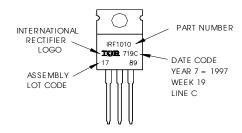
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com 5

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- - 2 CONTROLLING DIMENSION : INCH
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.


TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.01/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/