imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRL3705NPbF

HEXFET[®] Power MOSFET

- Logic Level Gate Drive
- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

	V _{DSS}	55V
	R _{DS(on)} max.	0.01Ω
s	Ι _D	89A©

G	D	S
Gate	Drain	Source

	Standard Pack			
Base part number	Package Type	Form Quan		Orderable Part Number
IRL3705NPbF	TO-220	Tube	50	IRL3705NPbF

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
$_{D}$ @ T _C = 25°C Continuous Drain Current, V _{GS} @ 10V		895		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	63	А	
I _{DM}	Pulsed Drain Current ①	310		
P _D @T _C = 25°C	Maximum Power Dissipation	170	W	
	Linear Derating Factor	1.1	W/°C	
V _{GS}	Gate-to-Source Voltage	± 16	V	
E _{AS}	Single Pulse Avalanche Energy ②	340	mJ	
I _{AR}	AR Avalanche Current ①		А	
E _{AR}	Repetitive Avalanche Energy ①	17	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds (1.6mm from case)	300		
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

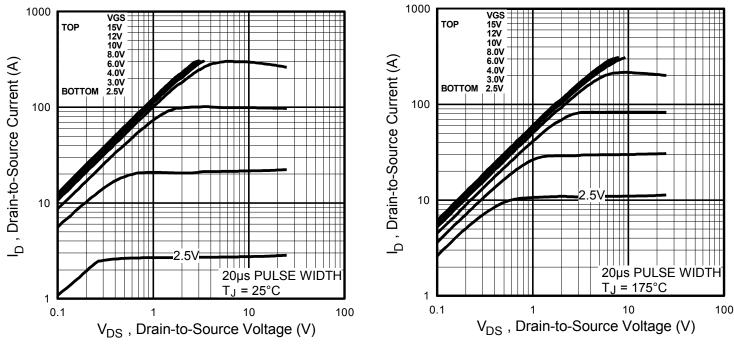
Thermal Resistance

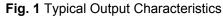
Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case		0.90	
$R_{ hetaCS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{0JA}	Junction-to-Ambient		62	

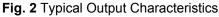
	nracteristics @ T」= 25°C (unless otherv	_	1			A 11/1
	Parameter	Min.	Тур.	Max.		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55				V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.056		V/°C	Reference to 25° C, I _D = 1mA
	Static Drain-to-Source On-			0.010		V _{GS} = 10V, I _D = 46A④
R _{DS(on)}	Resistance			0.012	Ω	V _{GS} = 5.0V, I _D = 46A ④
	Resistance			0.018		V _{GS} = 4.0V, I _D = 39A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	50			S	$V_{DS} = 25V, I_{D} = 46A$
	Drain to Course Lookage Current			25		V _{DS} = 55V, V _{GS} = 0V
DSS	Drain-to-Source Leakage Current			250	μA	V _{DS} = 44V,V _{GS} = 0V,T _J =150°C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -16V
Q _g	Total Gate Charge			98		I _D = 46A
Q _{gs}	Gate-to-Source Charge			19	nC	V _{DS} = 44V
Q_{gd}	Gate-to-Drain Charge			49		V_{GS} = 5.0V , See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 28V$
t _r	Rise Time		140			I _D = 46A
t _{d(off)}	Turn-Off Delay Time		37		ns	R _G = 1.8Ω,V _{GS} = 5.0V
t _f	Fall Time		78			R _D = 0.59Ω, See Fig. 10④
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package and center of die contact
C _{iss}	Input Capacitance		3600			V _{GS} = 0V
C _{oss}	Output Capacitance		870		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		320			<i>f</i> = 1.0MHz, See Fig. 5
Source-Drain	Ratings and Characteristics					
	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			89©	^	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			310		integral reverse
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S = 46A,V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		94	140	ns	T _J = 25°C ,I _F = 46A
Q _{rr}	Reverse Recovery Charge		290	440	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)


② V_{DD} = 25V, starting T_J = 25°C, L = 320µH, R_G = 25Ω, I_{AS} = 46A.(See fig.12)


 $\label{eq:ISD} \textcircled{3} \quad I_{SD} \leq 46A, \ di/dt \leq 250A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$


④ Pulse width \leq 300µs; duty cycle \leq 2%.

© Calculated continuous current based on maximum allowable junction temperature; for recommended current- handling of the package refer to Design TIP # 93-4

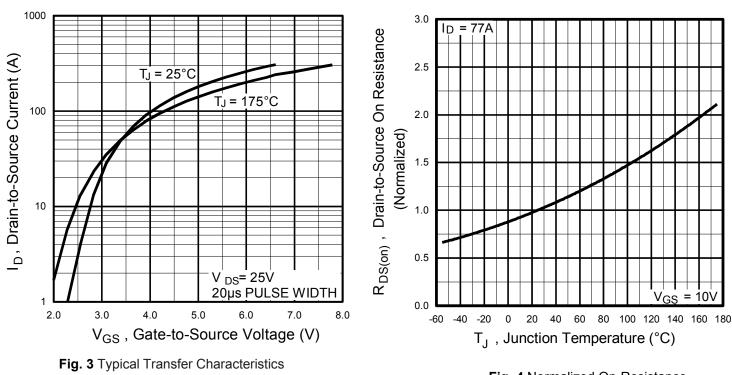
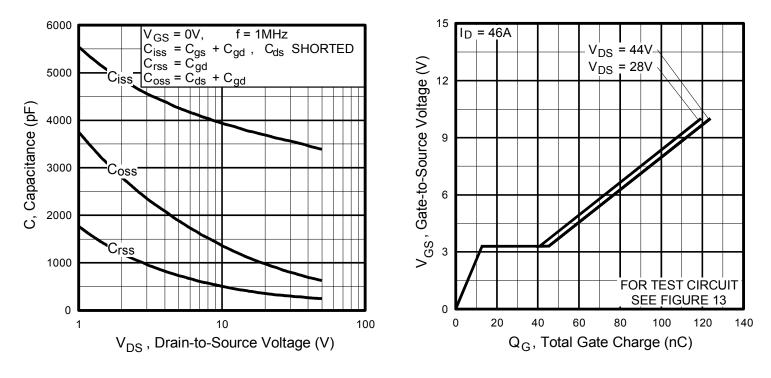
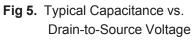
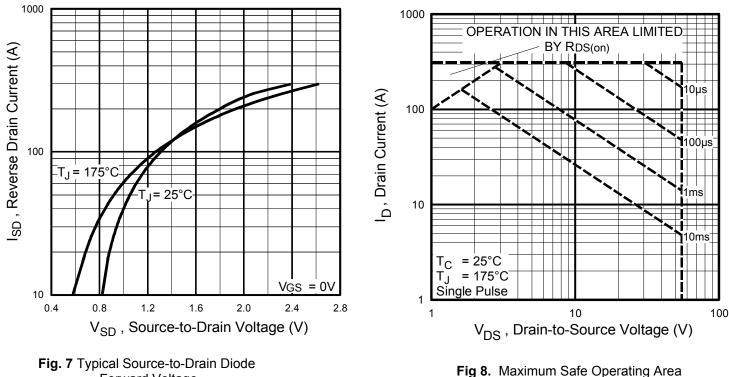





Fig. 4 Normalized On-Resistance vs. Temperature

Forward Voltage

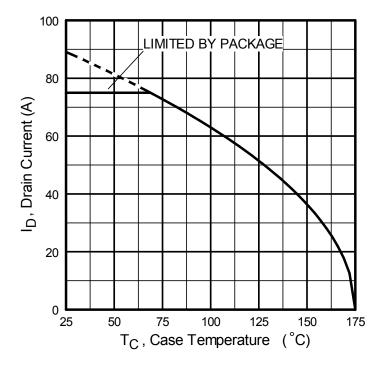


Fig 9. Maximum Drain Current vs. Case Temperature

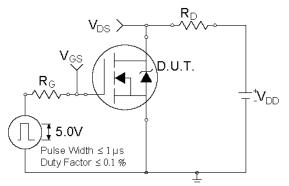


Fig 10a. Switching Time Test Circuit

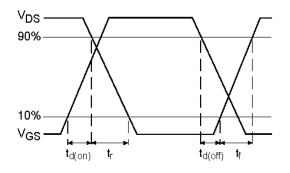


Fig 10b. Switching Time Waveforms

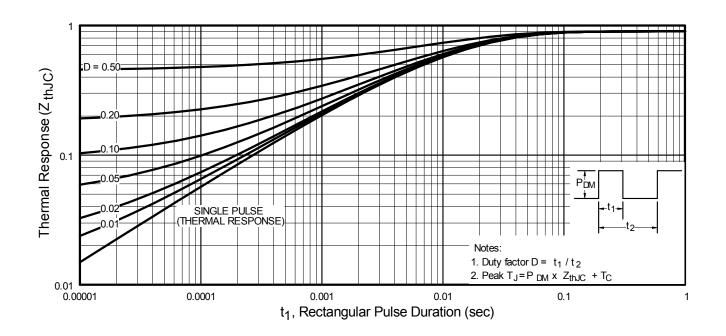


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

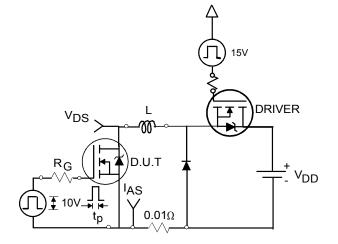
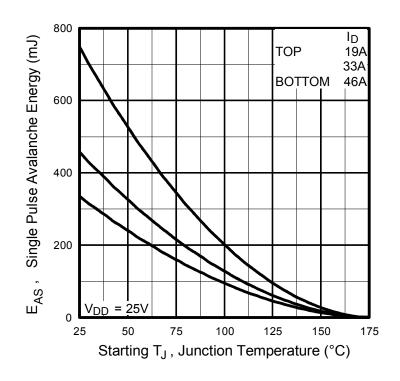
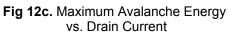




Fig 12a. Unclamped Inductive Test Circuit

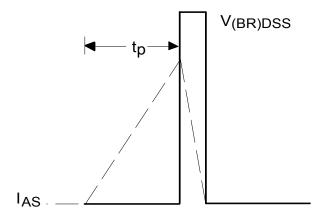


Fig 12b. Unclamped Inductive Waveforms

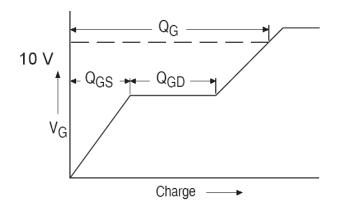


Fig 13a. Gate Charge Waveform

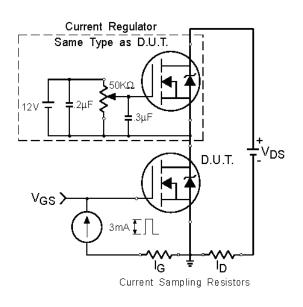
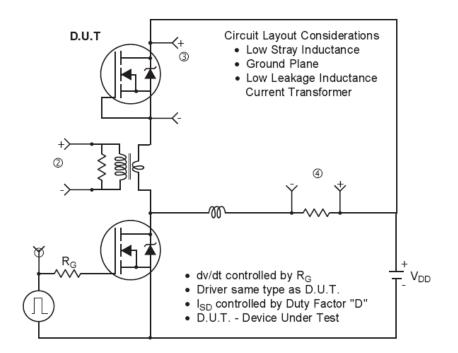



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

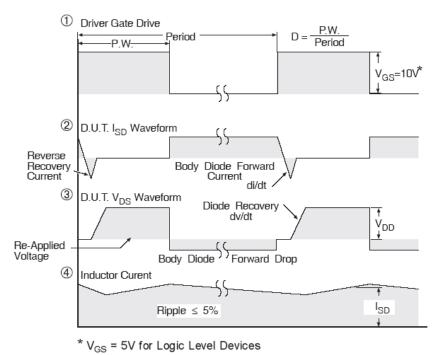
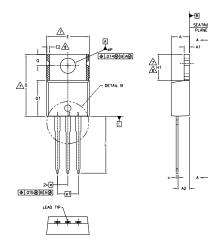
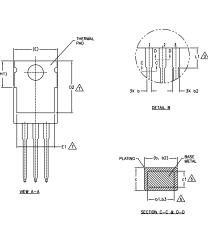




Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

TO-220 Package Outline (Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. 1.-
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]. 2.-
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1. 3.-4.-
- DIMENSION D, D1 & E D0 NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY. -/
- CONTROLLING DIMENSION : INCHES.
- 7.-THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING 8.-
- AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (mox.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9 -

	DIMENSIONS				
SYMBOL	MILLIMETERS		INC		
	Min.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.83	.140	.190	
A1	1.14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54	BSC	.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
ØP	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

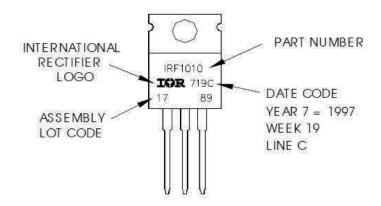
LEAD ASSIGNMENTS

HEXFET 1.– GATE 2.– DRAIN 3.– SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES


1.- ANODE 2.- CATHODE 3.- ANODE

TO-220 Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

TO-220AB packages are not recommended for Surface Mount Application.

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) [†]	
Moisture Sensitivity Level	TO-220 N/A	
RoHS Compliant	Yes	

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments
05/25/2018	 Changed datasheet with Infineon logo - all pages. Corrected TO-220 Package outline on page 8. Added disclaimer on last page.

Trademarks of Infineon Technologies AG

μΗVICTM, μIPMTM, μPFCTM, AU-ConvertIRTM, AURIXTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, CoolDPTM, CoolGaNTM, COOLIRTM, CoolSETTM, Coo

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG	IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").	For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).
81726 Munich, Germany © 2016 Infineon Technologies AG. All Rights Reserved.	With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement	Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.
Do you have a question about this	of intellectual property rights of any third party.	WARNINGS
document?	or intellectual property rights of any time party.	Due to technical requirements products may
Email: erratum@infineon.com	In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and	contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.
Document reference ifx1	standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.	Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon
	The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.	Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.