

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

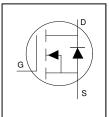
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

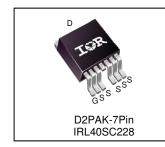
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

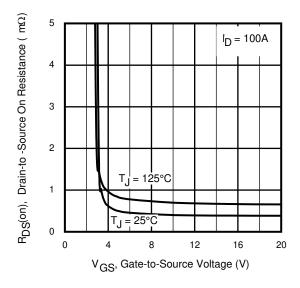
Application


- Brushed Motor drive applications
- **BLDC** Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits


- Optimized for Logic Level Drive
- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free*
- RoHS Compliant, Halogen-Free

HEXFET® Power MOSFET



$V_{ exttt{DSS}}$	40V
R _{DS(on)} typ.	0.50 m Ω
max	$0.65 m\Omega$
D (Silicon Limited)	557A ①
D (Package Limited)	360A

G	D	S
Gate	Drain	Source

Base Part Number	Bookege Type	Standar	d Pack	Orderable Part Number
base Part Number	ase Part Number Package Type		Quantity	Orderable Part Number
IRL40SC228	D2PAK-7Pin	Tape and Reel Left	800	IRL40SC228

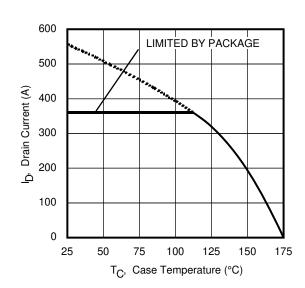


Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Rating

Symbol	Symbol Parameter		Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, VGS @ 10V (Silicon Limited)	557①	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	393 ①	٨
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	360	Α
I _{DM}	Pulsed Drain Current ②	1440⑩	
P _D @T _C = 25°C	Maximum Power Dissipation	416	W
Linear Derating Factor		2.8	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	٧
T_J	Operating Junction and	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	1275	
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ®	2150	mJ
I _{AR}	Avalanche Current ②	Soo Fig 15 16 220 22b	Α
E _{AR}	Repetitive Avalanche Energy ②	See Fig 15, 16, 23a, 23b	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.36	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient *		62	

Static @ T_{.I} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			>	$V_{GS} = 0V, I_D = 250 \mu A$
$\Delta V_{(BR)DSS}/\Delta T_{c}$	Breakdown Voltage Temp. Coefficient		0.031		V/°C	Reference to 25°C, I _D = 5mA ②
D	Static Drain-to-Source On-Resistance		0.50	0.65	*** • •	$V_{GS} = 10V, I_D = 100A$ §
$R_{DS(on)}$	Static Drain-to-Source On-Resistance		0.60	0.90	mΩ	$V_{GS} = 4.5V, I_D = 50A$ ©
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.4	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
ı	Drain to Source Leekage Current			1.0		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$
IDSS	Drain-to-Source Leakage Current			150	μΑ	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125$ °C
ı	Gate-to-Source Forward Leakage			100	n 1	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
R_G	Gate Resistance		2.2		Ω	

Notes:

- Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 360A. Note that Current imitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 0.146mH, R_G = 50 Ω , I_{AS} = 100A, V_{GS} =10V.
- ⑤ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- O Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- ® R_{θ} is measured at T_{J} approximately 90°C.
- ① Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 65$ A, $V_{GS} = 10$ V.
- Pulse drain current is limited to 1440A by source bonding technology.
- * When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994: http://www.infineon.com/technical-info/appnotes/an-994.pdf

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	264			S	$V_{DS} = 10V, I_{D} = 100A$
Q_g	Total Gate Charge		205	307		$I_{D} = 100A$
Q_{gs}	Gate-to-Source Charge		57		nC	$V_{DS} = 20V$
Q_{gd}	Gate-to-Drain Charge		104		IIC	$V_{GS} = 4.5V$ (5)
Q _{sync}	Total Gate Charge Sync. (Qg- Qgd)		101			
$t_{d(on)}$	Turn-On Delay Time		67			$V_{DD} = 20V$
t _r	Rise Time		210			$I_D = 30A$
$t_{d(off)}$	Turn-Off Delay Time		222		ns	$R_G = 2.7\Omega$
t _f	Fall Time		176			V _{GS} = 4.5V ^⑤
C _{iss}	Input Capacitance		19680			$V_{GS} = 0V$
C _{oss}	Output Capacitance		2305			$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		1575		рF	f = 1.0MHz, See Fig.7
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		2690			$V_{GS} = 0V$, VDS = 0V to 32V \odot
C _{oss eff.(TR)}	Output Capacitance (Time Related)		3390			$V_{GS} = 0V$, VDS = 0V to 32V®

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			557①		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ②			1440⑩		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 100A, V_{GS} = 0V $ §
dv/dt	Peak Diode Recovery dv/dt 4		2.0		V/ns	$T_J = 175^{\circ}C, I_S = 100A, V_{DS} = 40V$
t _{rr}	Reverse Recovery Time		42		ns	$T_{J} = 25^{\circ}C$ $V_{DD} = 34V$
·rr	Theverse ricoovery rime		43		110	$T_J = 125^{\circ}C$ $I_F = 100A$,
	Doverso Dosevery Charge		43		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \bigcirc
Q_{rr}	Reverse Recovery Charge		45		110	$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		1.7		Α	$T_J = 25^{\circ}C$

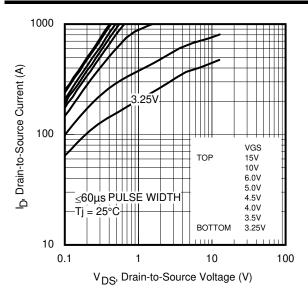


Fig 3. Typical Output Characteristics

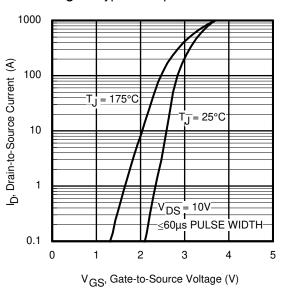


Fig 5. Typical Transfer Characteristics

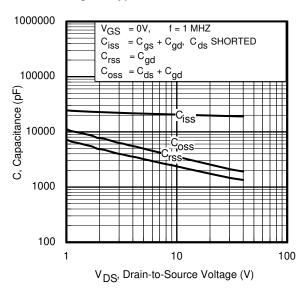


Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

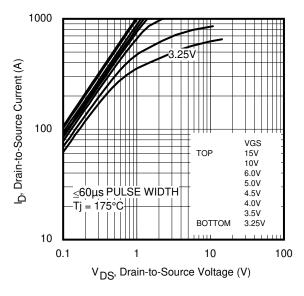


Fig 4. Typical Output Characteristics

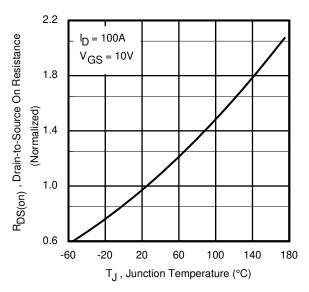


Fig 6. Normalized On-Resistance vs. Temperature

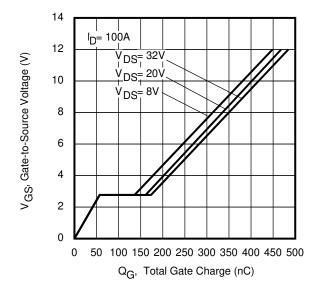


Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

2016-6-28

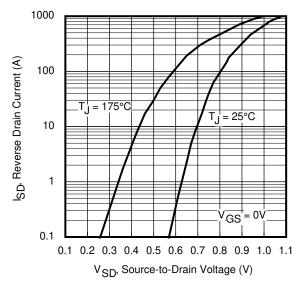


Fig 9. Typical Source-Drain Diode Forward Voltage

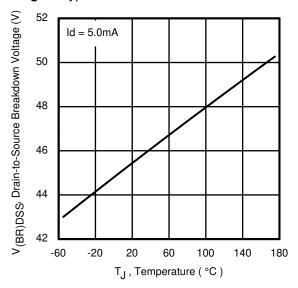


Fig 11. Drain-to-Source Breakdown Voltage

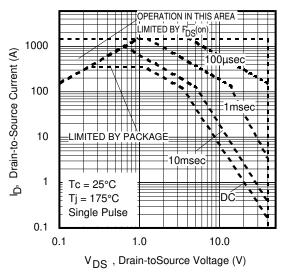


Fig 10. Maximum Safe Operating Area

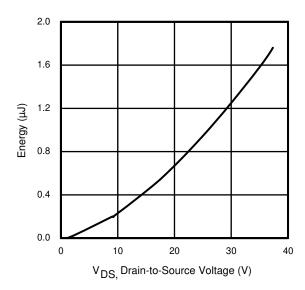


Fig 12. Typical Coss Stored Energy

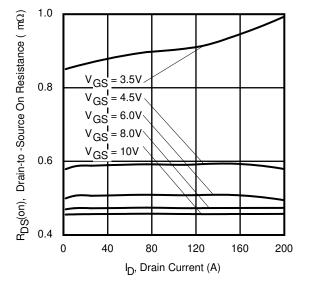


Fig 13. Typical On-Resistance vs. Drain Current

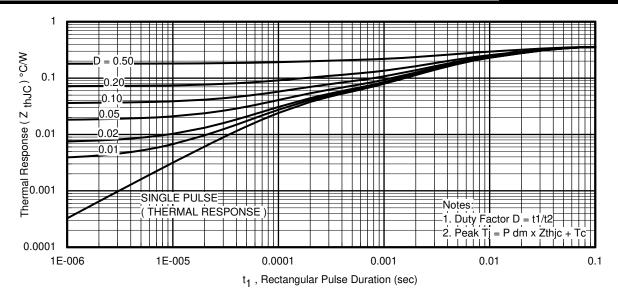


Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

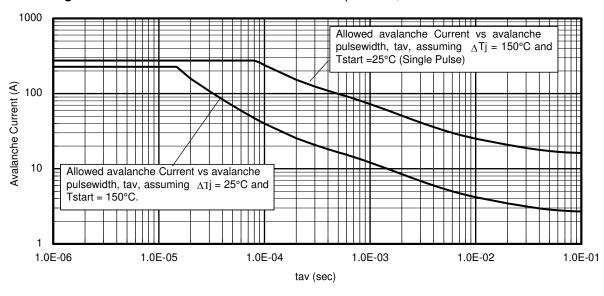


Fig 15. Avalanche Current vs. Pulse Width

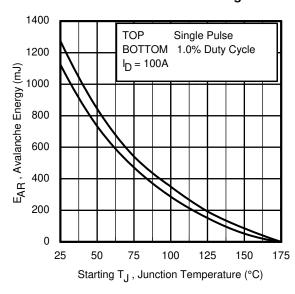


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. $P_{D \text{ (ave)}}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- AT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

$$\begin{split} Z_{thJC}(D,\,t_{av}) &= \text{Transient thermal resistance, see Figures 14)} \\ &\text{PD (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \end{split}$$

 $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

 $E_{AS (AR)} = P_{D (ave)} t_{av}$

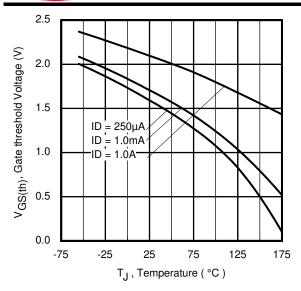


Fig 17. Threshold Voltage vs. Temperature

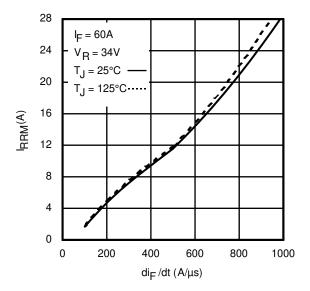


Fig 19. Typical Recovery Current vs. dif/dt

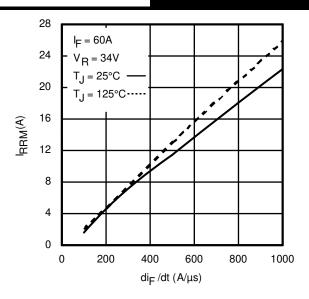


Fig 18. Typical Recovery Current vs. dif/dt

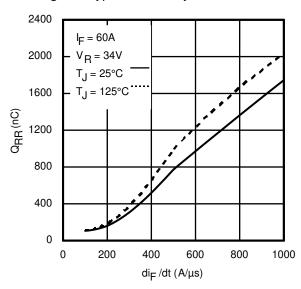


Fig 20. Typical Stored Charge vs. dif/dt

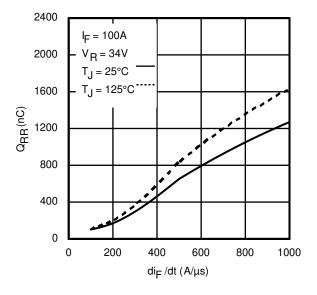


Fig 21. Typical Stored Charge vs. dif/dt

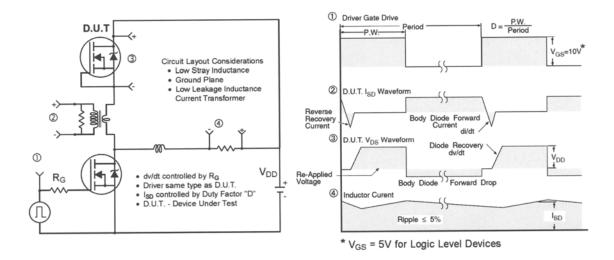


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

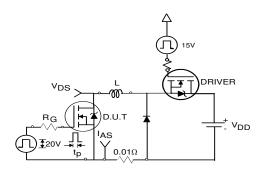


Fig 23a. Unclamped Inductive Test Circuit

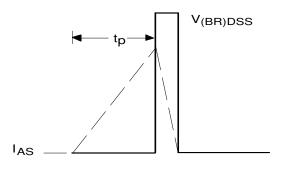


Fig 23b. Unclamped Inductive Waveforms

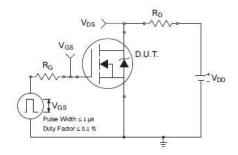


Fig 24a. Switching Time Test Circuit

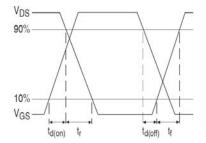


Fig 24b. Switching Time Waveforms

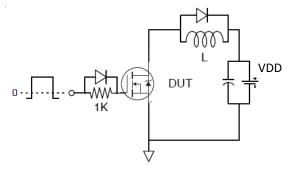
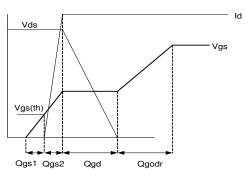
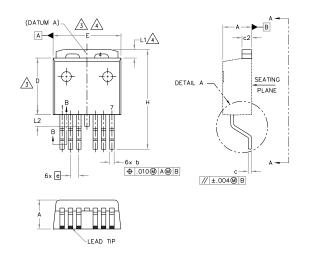
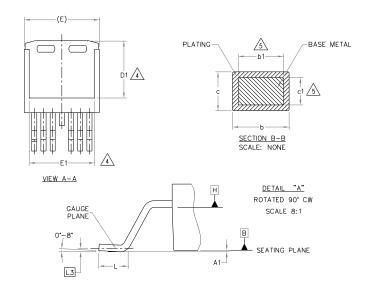


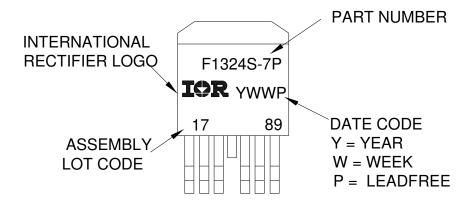
Fig 25a. Gate Charge Test Circuit


Fig 25b. Gate Charge Waveform

8

D²Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches))



S						
Y M	DIMENSIONS					
B	MILLIM	ETERS	INC	HES	O T E S	
L	MIN.	MAX.	MIN.	MAX.	E S	
А	4.06	4.83	.160	.190		
A1	_	0.254	_	.010		
b	0.51	0.91	.020	.036		
b1	0.51	0.81	.020	.032	5	
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	7.42	.270	.292	4	
E	9.65	10.54	.380	.415	3,4	
E1	8.00	9.00	.315	.354	4	
е	1.27	BSC	.050	BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	_	.066	4	
L2	_	1.78	_	.070		
L3	0.25	BSC	.010	BSC		

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 23. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

D²Pak - 7 Pin Part Marking Information

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †				
Moisture Sensitivity Level	D2PAK-7Pin MSL1 (per JEDEC J-STD-020D [†])				
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.