: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Applications

- High Frequency Synchronous Buck Converters for Computer Processor Power
Benefits
- Very Low RDS(on) at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}$
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 20	
$\mathrm{L}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, V_{GS} @ 10V	434	A
ID_{D} @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, $\mathrm{V}_{\text {GS }}$ @ 10V	304	
IDM	Pulsed Drain Current (1)	170	
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Maximum Power Dissipation (5)	40	W
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Maximum Power Dissipation (5)	20	
	Linear Derating Factor	0.27	W/ ${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction and	-55 to + 175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Typ.	Max.	Units
$\mathrm{R}_{\text {AIC }}$	Junction-to-Case	-	3.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {AJA }}$	Junction-to-Ambient (PCB Mount) (9)	-	50	
$\mathrm{R}_{\text {बJA }}$	Junction-to-Ambient	-		

Notes (1) through (5) are on page 11
www.irf.com

Static @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{BV}_{\text {DSs }}$	Drain-to-Source Breakdown Voltage	30	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
$\Delta \mathrm{BV} \mathrm{DSSS} / \Delta \mathrm{T}_{\text {J }}$	Breakdown Voltage Temp. Coefficient	-	23	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-to-Source On-Resistance	-	11	13.8	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$ (3)
		-	14.5	18.2		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}$ (3)
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	1.35	1.8	2.25	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$
$\Delta \mathrm{V}_{\mathrm{GS}(\text { th })} / \Delta \mathrm{T}_{\mathrm{J}}$	Gate Threshold Voltage Coefficient	-	-4.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {DSS }}$	Drain-to-Source Leakage Current	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	-	150		$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {GSS }}$	Gate-to-Source Forward Leakage	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-	-	-100		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
gfs	Forward Transconductance	51	-	-	S	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}$
Q_{g}	Total Gate Charge	-	7.0	11	$n C$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \\ & \text { See Fig. } 16 \end{aligned}$
$\mathrm{Q}_{\mathrm{gs} 1}$	Pre-Vth Gate-to-Source Charge	-	1.8	-		
$\mathrm{Q}_{\mathrm{gs} 2}$	Post-Vth Gate-to-Source Charge	-	0.7	-		
Q_{gd}	Gate-to-Drain Charge	-	2.7	-		
$Q_{\text {godr }}$	Gate Charge Overdrive	-	1.8	-		
$\mathrm{Q}_{\text {sw }}$	Switch Charge ($\left.\mathrm{Q}_{\mathrm{gs} 2}+\mathrm{Q}_{\mathrm{gd}}\right)$	-	3.4	-		
$\mathrm{Q}_{\text {oss }}$	Output Charge	-	4.0	-	nC	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	-	7.1	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}(3) \\ & \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A} \\ & \text { Clamped Inductive Load } \end{aligned}$
t_{r}	Rise Time	-	28	-		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time	-	9.8	-		
t_{f}	Fall Time	-	3.5	-		
$\mathrm{C}_{\text {iss }}$	Input Capacitance	-	780	-	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance	-	180	-		
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	-	100	-		

Avalanche Characteristics

	Parameter	Typ.	Max.	Units
E_{AS}	Single Pulse Avalanche Energy(2)	-	28	mJ
I_{AR}	Avalanche Current ${ }^{(1)}$	-	12	A
E_{AR}	Repetitive Avalanche Energy (1)	-	4.0	mJ

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	-	-	43(4)	A	MOSFET symbol showing the
$I_{\text {SM }}$	Pulsed Source Current (Body Diode) (1)	-	-	170		integral reverse p-n junction diode.
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	-	-	1.0	V	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=12 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (3)
$\mathrm{t}_{\text {tr }}$	Reverse Recovery Time	-	23	35	ns	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \text { (3) } \end{aligned}$
Q_{rr}	Reverse Recovery Charge	-	14	21	nC	
$\mathrm{t}_{\text {on }}$	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				
2						www.irf.com

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRLR/U7807Z

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13. Gate Charge Test Circuit
Fig 14b. Switching Time Waveforms

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET ${ }^{\circledR}$ Power MOSFETs

Fig 16. Gate Charge Waveform

Power MOSFET Selection for Non-Isolated DC/DC Converters

Control FET

Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{\text {ds(on) }}$ of the MOSFET, but these conduction losses are only about one half of the total losses.

Power losses in the control switch Q1 are given by;

$$
P_{\text {loss }}=P_{\text {conduction }}+P_{\text {suichining }}+P_{\text {drive }}+P_{\text {output }}
$$

This can be expanded and approximated by;

$$
\begin{aligned}
P_{\text {loss }} & =\left(I_{r m s}{ }^{2} \times R_{d s(o n)}\right) \\
& +\left(I \times \frac{Q_{g d}}{i_{g}} \times V_{i n} \times f\right)+\left(I \times \frac{Q_{g s 2}}{i_{g}} \times V_{i n} \times f\right) \\
& +\left(Q_{g} \times V_{g} \times f\right) \\
& +\left(\frac{Q_{o s s}}{2} \times V_{i n} \times f\right)
\end{aligned}
$$

This simplified loss equation includes the terms $Q_{\text {gs2 }}$ and $Q_{\text {oss }}$ which are new to Power MOSFET data sheets.
$Q_{\mathrm{gs} 2}$ is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, $Q_{g s 1}$ and $Q_{g s 2}$, can be seen from Fig 16.
$\mathrm{Q}_{\mathrm{gs2} 2}$ indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to $I_{\text {dmax }}$ at which time the drain voltage begins to change. Minimizing $Q_{\text {gs2 }}$ is a critical factor in reducing switching losses in Q1.
$Q_{\text {oss }}$ is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how $Q_{\text {oss }}$ is formed by the parallel combination of the voltage dependant (nonlinear) capacitance's C_{ds} and C_{dg} when multiplied by the power supply input buss voltage.

Synchronous FET

The power loss equation for Q2 is approximated by;

$$
\begin{aligned}
P_{\text {loss }} & =P_{\text {conduction }}+P_{\text {drive }}+P_{\text {output }}^{*} \\
P_{\text {loss }} & =\left(I_{r m s}^{2} \times R_{d s(o n)}\right) \\
& +\left(Q_{g} \times V_{g} \times f\right) \\
& +\left(\frac{Q_{o s s}}{2} \times V_{i n} \times f\right)+\left(Q_{r r} \times V_{\text {in }} \times f\right)
\end{aligned}
$$

*dissipated primarily in Q1.
For the synchronous MOSFET Q2, $\mathrm{R}_{\mathrm{ds}(0 n)}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge $Q_{\text {oss }}$ and reverse recovery charge $Q_{r r}$ both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and $V_{\text {in }}$. As Q1 turns on and off there is a rate of change of drain voltage $\mathrm{dV} / \mathrm{dt}$ which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of $Q_{g d} / Q_{g s 1}$ must be minimized to reduce the potential for $\mathrm{Cdv} / \mathrm{dt}$ turn on.

Figure A: $Q_{\text {oss }}$ Characteristic

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information

Notes: This part marking information applies to devices produced before 02/26/2001

Notes: This part marking information applies to devices produced after 02/26/2001

www.irf.com

IRLR/U7807Z
 I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

I-Pak (TO-251AA) Part Marking Information

Notes: This part marking information applies to devices produced before 02/26/2001

Notes: This part marking information applies to devices produced after 02/26/2001

D-Pak (TO-252AA) Tape \& Reel Information

Dimensions are shown in millimeters (inches)

NOTES

1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
3. OUTLINE CONFORMS TO EIA-481 \& EIA-541.

NOTES :

1. OUTLINE CONFORMS TO EIA-481.

Notes:

(1) Repetitive rating; pulse width limited by max. junction temperature.
(2) Starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=0.39 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega$, $I_{A S}=12 A$.
(3) Pulse width $\leq 400 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.
(4) Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A.
(5) When mounted on 1 " square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note \#AN-994.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.4/03
www.irf.com

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

