imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRMD2231Q

International Rectifier • 233 Kansas Street, El Segundo, CA 90245 USA

IRMD22381Q Demo Board For 3-phase / 380V motor drives

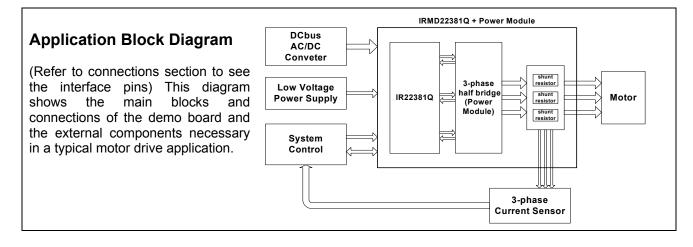
IR22381Q Demo Board without IGBT Power Module

International **TOR** Rectifier

IRMD22381Q Demo Board

For 3-phase / 380V motor drives

IRMD22381Q Demo Board


- Up to 1200V DC-bus capability
- Up to 25A maximum phase current
- Optional on-board phase shunt resistors
- IR22381Q device connected in 3-phase + brake configuration
- On-board bootstrap supply for high-side gate drive
- Full protection of phase-to-phase, DC-bus and ground short circuit by monitoring IGBT de-saturation
- Brake IGBT de-saturation protection
- Fault feedback to ground level
- Trimmer programmable dead time
- Anti-shoot-through management
- Phase voltage feedback
- Undervoltage lockout
- 3.3V digital input/output CMOS compatible
- IR22381Q can be replaced by IR21381Q

Power Module

- Standard ECONO2-PIM IGBT module compatible
- IGBT short circuit rated up to 1200V/25A.
- Easy to mount heat-sink holes

Introduction

The IRMD22381Q demo board is an evaluation board for IR22381Q gate driver (see device datasheet for details). IRMD22381Q is designed to drive 3-phase power modules with pin-out compatible to ECONO2-PIM. The board can drive AC or Brushless motors using power modules with up to 25A output current. The board is a flexible solution for different applications and can be customized by means reconfigurable components options. The control signals are 3.3V CMOS compatible; three-phase shunt resistor (with sensing pins) can be placed for current loop control; power module short circuits are managed by IR22381Q by synchronization of the IGBTs turn off. Board layout reduces the noise coupling between high and low voltage signals.

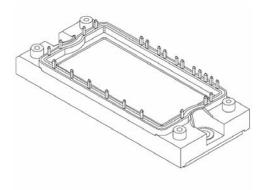
IR22381Q Demo Board (Shown without IGBT Power Module)

Table of contents

INTRODUCTION	1
Table of contents	2
Parameters	3
The IR22381Q	3
The power module	3
Important Notice	3
BOARD CONNECTORS	4
Connection with the system controller	4
FAULT logic signal	
DCF	5
RT+ and RT	5
VFHx and VFLx	5
VCC supply pin	5
VSS ground pin (GND)	5
5V	
Connecting the current sensors	
High power signal connector	
Connecting the power module	
Test Points	
TEST BENCH CONNECTION	
OPERATING DESCRIPTION	-
Normal operating mode	
Fault management	
Multilevel board solution	
Precharge of the bootstrapped sections	
BOARD CUSTOMIZATION	
Bootstrap circuit	
Gate resistances	
OTHER EXTRA COMPONENTS	
Desat circuit	
Clamping Diode for Vs below ground	
RC filter on COM pin	
Fast diode between gate and supply pin	.13
Zener diode to preserve the IGBT gate	.14
Optional output shunt resistor	
Resistor on v _{cc}	
BILL OF MATERIAL	
SCHEMATIC LAYOUT	
LAYOUT	.22

Table of figures

Figure 1: TOP image of board	4
Figure 2: LED connection	5
Figure 3: Test bench connection	
Figure 7: Bootstrap circuit	
Figure 8: Desat external filter	
Figure 9: -V _s clamp	
Figure 10: COM below ground protection	
Figure 11: Collector-Gate current protection	
Figure 12: Zener clamp for IGBT gate	


Parameters	Values	Description, condition
Input Power		
DC+	0 to 1200V	DC _{Bus} voltage positive with 1200V power module
DC-	ground	DC _{bus} voltage negative
V _{cc}	15V typ	Low voltage power supply. Follow IR22381Q datasheet for supply setting
V _{SS}	ground	Low voltage ground
l _{cc}	25 mA (max)	quiescent Vcc current
Output Power		
I _{Imax}	25A @25°C	max phase dc output current
Control Inputs/Outputs		
40 pip copportor 11 1/Oc	2.2 (to 15 (compatible	see "Board Connectors" section

The IR22381Q

40 pin connector J1 I/Os

The IR22381Q is a high voltage, 3-phase IGBT driver best suited for AC motor drive applications. Integrated desaturation logic provides all mode of overcurrent protection, including ground fault protection. The sensing desaturation input is provided by active bias stage to reject noise. Soft shutdown is predominantly initiated in the event of overcurrent followed by turn-off of all six outputs. A shutdown input is provided for a customized shutdown function. The DT pin allows external resistor to program the deadtime. Output drivers have separate turn on/off pins with two stage turn-on output to achieve the desired di/dt switching level of IGBT. Voltage feedback provides accurate volt x second measurement.

3.3V to 15V compatible

For further technical information see the IR22381Q datasheet at http://www.irf.com.

on page 4

The power module

IRMD22381Q demo board is ECONO2-PIM compatible with standard pin out.

ECONO2 PIM

Important Notice

IRMD22381Q demo board is supplied with a tentative Bill of Material suitable for a 1200V/10A@100C power module. The BOM presented on page 15 provides a suggestion for the above mentioned power module. It is strongly recommended to customize the demo board to fit the application requirements for the power module that has been chosen.

Suggestions on passive sizing are also available in DT04-4 at http://www.irf.com.

BOARD CONNECTORS

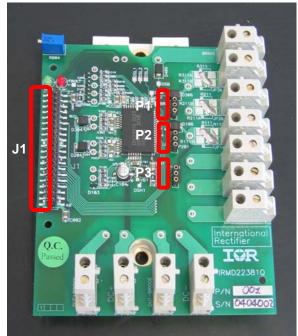


Figure 1: TOP image of board

Connection with the system controller

On board there is a 40 pins connector for the control signals. The driver board uses 26 pins. The remaining pins are for the sensing board (IRCS2277S) that can be connected on top of IRMD22381Q board.

		 , p	0011	 	•
HINU/N	1			2	LINU
				4	5V
FAULT/N	5	1 ()	O 2	6	SD
		3 ()	04	8	BRIN/N
		5 () 7 ()	06		
		9 O	0 10	12	HINV/N
LINV	13	11 ()	0 12		
		 13 ()	O 14		
VSS	17	 15 ()	0 16	18	VSS
VSS – RT-	19	 17 () 19 ()	○ 18 ○ 20	20	VSS
RT+	21	 21 ()	0 22		
		23 🔾	0 24	24	HINW/N
LINW	25	 25 ()	0 26	26	DCF
		 27 () 29 ()	○ 28 ○ 30		
VFHU	29	 31 ()	O 32	30	VFHV
VFHW	31	33 🔾	Ó 34	32	VFLU
VFLV	33	 35 🔿	O 36	34	VFLW
		 37 ()	0 38		
VCC	37	39 🔿	O 40	38	VCC
VCC	39			40	VCC

Table 1: 40-pin connector J1

Input logical signals HINU/N, LINU, HINV/N, LINV, HINW/N, LINW, BRIN/N, SD

These logic inputs are 5V and 3.3 V compatible CMOS I/O ports. The logic signals ending with "/N" are active low. The board is populated with pull-up and pull-down resistors (to 5V supply) in order to keep inputs tied to supplies when controller is still inactive. HINx/N turns on the high side IGBT while LINx the low side. When both HINx/N and LINx of the same phase are active at the same time an internal anti-shot trough circuit turns off the output drivers.

FAULT logic signal

This is an output, open drain, logic signal. The logic signal is active low, tied to connector V_{CC} with a 1k Ω pull-up resistor. It reports the power module fault (IGBT desaturation detection, latched signal) or the V_{CC} undervoltage (unlatched).

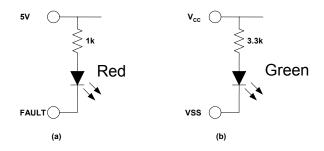
On board a red LED (DL2) indicates when the signal is active; Figure 2a shows the connection.

DCF

Dc plus feedback voltage (DCF pin) is connected to a resistor divider tied from DC+ to V_{SS} (DC-) and clamped by a 5V zener. At DC+= 330V, DCF \approx 1.4V.

RT+ and RT-

RT+ and RT-, thermistor output, are connected to the corresponding RT+, RT- pins of the power module. Note: RT- is starred to Vss at pin 19 of the J1 connector in the IRMD22381Q PCB.


VFHx and VFLx

Voltage feedback outputs from IRMD22381Q

Note: further information about IR22381Q I/Os are described in details in IR22381Q datasheet.

V_{cc} supply pin

This is the supply pin for all the devices. On board a green LED (DL1) indicates the supply power on; Figure 2b shows the connection.

V_{ss} ground pin (GND)

The board ground is connected to the power module DC- pin. The V_{SS} pin of the connector and the devices ground pin are star-connected to the DC- pin. DC- star connection has been chosen to reduce the noise coupled from the floating signals.

5V

5V input supply for FAULT, VFx and inputs pull-ups.

Connecting the current sensors

P1, P2 and P3 are connected with the optional shunt resistors placed on the phase output nodes.

CONNECTOR P1					
SHU+ (motor side)	1	10			
SHU- (power module side)	2				
U	3				
C	ONNE	CTOR P2			
SHV+ (motor side)	1	1			
SHV- (power module side)	2				
V	3				
C	ONNE	CTOR P3			
SHW+ (motor side)	1	1			
SHW- (power module side)	2				
W	3	° 🕖			

Table 2: P1, P2 and P3 connectors for Kelvin contacts to shunt signals

SHU, SHV and SHW are sense pins connected to the shunt resistors terminals.

High power signal connector

There connectors dedicated to each power signal (DC+, DC-, OUT+BRIDGE, OUT-BRIDGE, U, V, W). Each single connector has 25 Ampere of maximum nominal dc current. DC_{bus} traces are both on top and on other internal layers of the PC board in order to reduce power dissipation. Connectors, DC-bus, phase and ground wires can be soldered directly on board using the corresponding pads located under the power connectors (to be removed).

Connecting the power module

The board is fully compatible with the ECONO2-PIM power module. The following table shows the module pin-out.

CONNECTION POINTS BETWEEN BOARD AND MODULE				
1	U bridge			
2	V bridge			
3	W bridge			
4	Phase U			
5	Phase V			
6	Phase W			
7	BRAKE – Brake IGBT drain output			
8	RT+ - thermistor positive pin			

-	
9	RT thermistor negative pin
10	DC-SENSE phase U, V, W - low side IGBT emitter
11	VGLW - phase W - low side IGBT gate
12	VGLV - phase V - low side IGBT gate
13	VGLU - phase U - low side IGBT gate
14	VGBR - brake IGBT gate
15	VEHW - phase W - high side IGBT emitter
16	VGHW - phase W - high side IGBT gate
17	VEHV - phase V - high side IGBT emitter
18	VGHV - phase V - high side IGBT gate
19	VEHU - phase U - high side IGBT emitter
20	VGHU - phase U - high side IGBT gate
21	OUT+BRIDGE – input rectifier positive output
22	DC+
23	OUT-BRIDGE – input rectifier negative output
24	DC- (GND)

Table 3: High power module connection

Test Points

Test points on board provide signals that are not available at the connectors. See the following table:

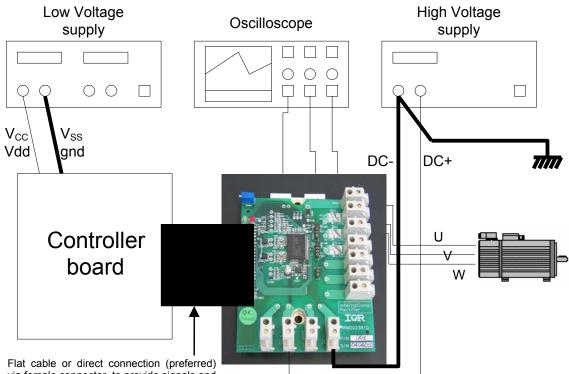

ONE FOR EACH CHANNEL (CH1 \rightarrow U, CH2 \rightarrow V, CH3 \rightarrow W)					
V _{B1,2,3}	High side floating supply voltage				
V _{S1,2,3}	High side floating supply offset voltage				
DSH _{1,2,3}	High side desat input voltage				
DSL _{1,2,3}	Low side desat input voltage				
	OTHER				
FAULT	Fault and Shut Down (or-wired)				
DSB	Brake desat input voltage				
BR	Brake IGBT gate				
V _{CC}	Low side and logic fixed supply voltage				
GND	Device V _{SS}				
COM	DC-SENSE – common low side emitter voltage				

Table 4: Test points

TEST BENCH CONNECTION

IRMD22381Q does NOT provide opto isolation.

The following picture shows the recommended connections for board evaluation. Bold lines are equipotential (DC-=Vss=gnd).

via female connector, to provide signals and supply (Vcc=15V typ)

Figure 3: Test bench connection

OPERATING DESCRIPTION

Normal operating mode

In the normal operating mode when HIN/N or LIN is active the high or low side IGBT turns on respectively. Turn on and turn off propagation delays and the propagation delay matching are specified in the IR22381Q datasheet. Devices introduce also the deadtime which is programmable (see product datasheet for details).

Fault management

The IR22381Q is able to detect the excessive current increase by monitoring the IGBT desaturation. The fault management procedure starts when one of the drivers senses the IGBT desaturation. The procedure is totally managed by an integrated FAULT LOGIC block without the controller assistance.

Multilevel board solution

With the optional shunt resistor the IRMD22381Q driver board can be connected with the IRCS2277S current sensing board through J1 and P1, P2, and P3 connectors. More information is available in IRCS2277S demo board data sheet.

Precharge of the bootstrapped sections

High voltage gate driver outputs are supplied by bootstrap topology technique. It's recommended to precharge the bootstrap supplies before starting to drive the motor with the preferred driving scheme.

BOARD CUSTOMIZATION

This demo board is meant to be flexible for self-customization. Place for many spare components allow verifying functionality of the gate driver under different external configurations. This section will go through the possible customizations of the board.

Bootstrap circuit

The high side floating supply (V_{BS}) is provided by a bootstrap capacitor. Figure 4 shows the circuit on board.

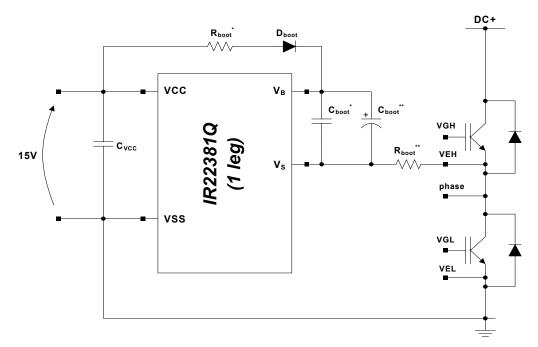


Figure 4: Bootstrap circuit

The following table shows the names of these components on board.

	U	V	W
C _{VCC}	C004	C004	C004
C _{boot} *	C101	C201	C301
C _{boot} **	C104	C204	C304
R _{boot} *	R101	R201	R301
R _{boot} **	R106	R206	R306

Gate resistances

The following table shows the names of gate resistances on board.

	U	V	W
high side gate to HOP	R103	R203	R303

high side gate to HOQ	R104	R204	R304
high side gate to HON	R105	R205	R305
low side gate to LOP	R108	R208	R308
low side gate to LOQ	R109	R209	R309
low side gate to LON	R110	R210	R310
brake gate to BR	R408		

OTHER EXTRA COMPONENTS

These components are provided to make IRMD22381Q board as customizable as possible. In many cases the use of the extra components is not necessary.

Desat circuit

The IR22381Q is able to detect the IGBT desaturation. To reject the noise on the desat pins the IR22381Q have an internal filter of 1 μ sec. If this is not enough an RC filter has been placed on board (see figure 8, R_{DSH}, C_{DSH} and R_{DSL}, C_{DSL}).

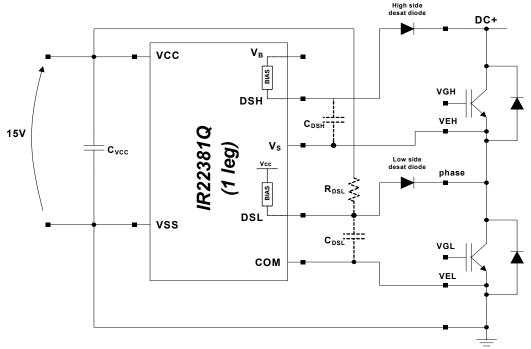


Figure 5: Desat external filter

External C filter (R is provided internally~100Kohm) delays desaturation detection, that causes a delay in turning the IGBT off. Consider this delay when sizing the soft-shut-down resistors. The following table shows the names of these components on board.

	U	V	W
C _{DSH}	C102	C202	C302
C _{DSL}	C103	C203	C303
C _{DSB}	C403		

Clamping Diode for Vs below ground

This solution preserves the device when the V_s pin goes below ground out of the device absolute maximum ratings. The V_s voltage is clamped to the maximum value allowed by a zener diode.

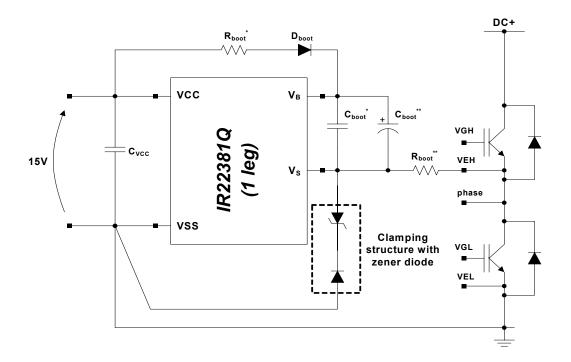


Figure 6: -V_s clamp

The following table shows the names of these components on board.

	U	V	W
DIODE	D104	D204	D304
ZENER	Z102	Z202	Z302

RC filter on COM pin

An RC filter (R_{COM} , C_{COM}) is provided to preserve the IC device from low side IGBT emitter undervoltage spikes.

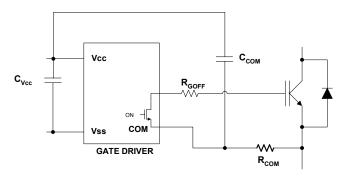


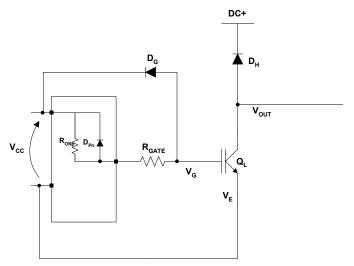
Figure 7: COM below ground protection

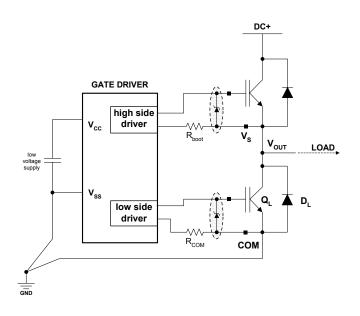
The following table shows the names of these components on board.

-	U, V, W
C _{COM}	C101
R _{COM}	R006

Fast diode between gate and supply pin

On all low and high side drivers a fast diode is provided to clamp the gate coming over the V_{CC} or V_B supply pins and to recover the current coming from the collector node through the gate-collector capacitance.




Figure 8: Collector-Gate current protection

The following table shows the names of these components on board.

	U	V	W
(high side) D_G	D103	D203	D303
(low side) D_G	D105	D205	D305
(brake) D _G	D405		

Zener diode to preserve the IGBT gate

To avoid a V_{GE} increasing over the absolute maximum rating a zener diode is connected between gate and emitter pins on all the IGBTs.

The following table shows the names of these components on board.

	U	V	W
(high side) ZENER	Z101	Z201	Z301
(low side) ZENER	Z103	Z203	Z303
(brake) ZENER	Z403		

Optional output shunt resistor

Two type of output shunt resistor, for current sensor, are possible see the following table:

	U	V	W
TO220 or	R111	R211	R311
	R111A //	R211A //	R311A //
OARS-1	R111B	R211B	R311B

The OARS-1 type (A and B) are connected in parallel.

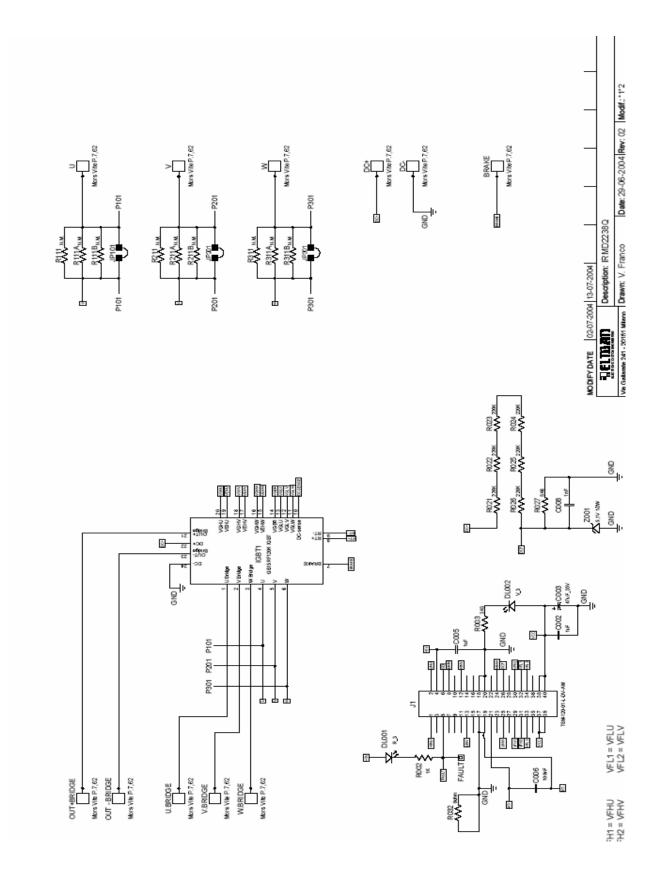
Resistor on v_{cc}

Provided to decouple V_{CC} from supply line.

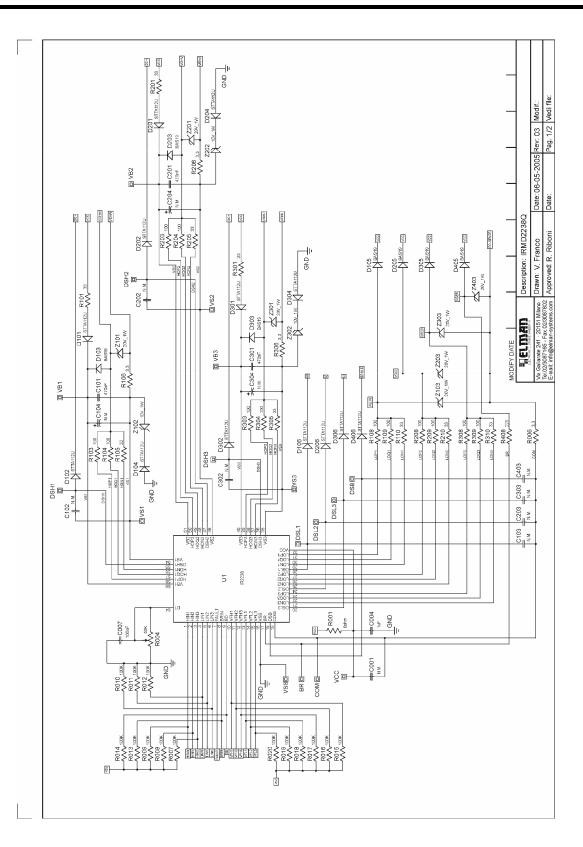
	U, V, W
Vcc decoupling	R001

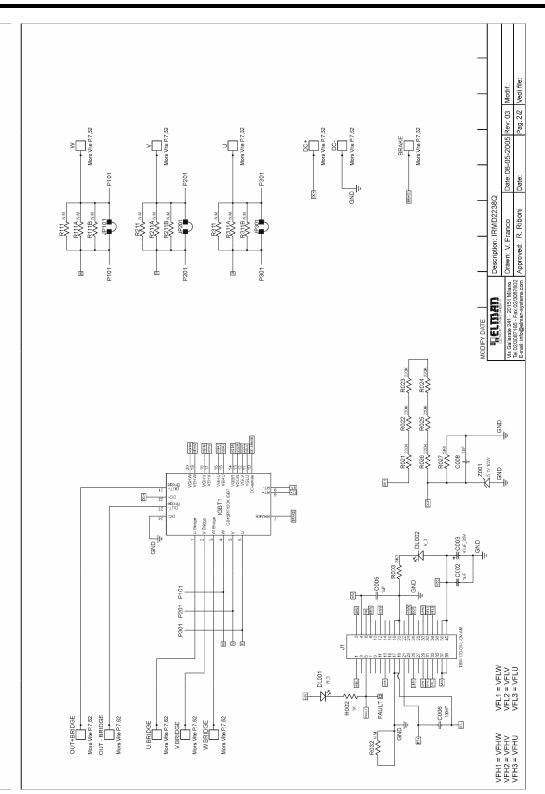
BILL OF MATERIAL

The hereafter provided BOMs represent a suggestion based on the IGBT characteristics shown below.

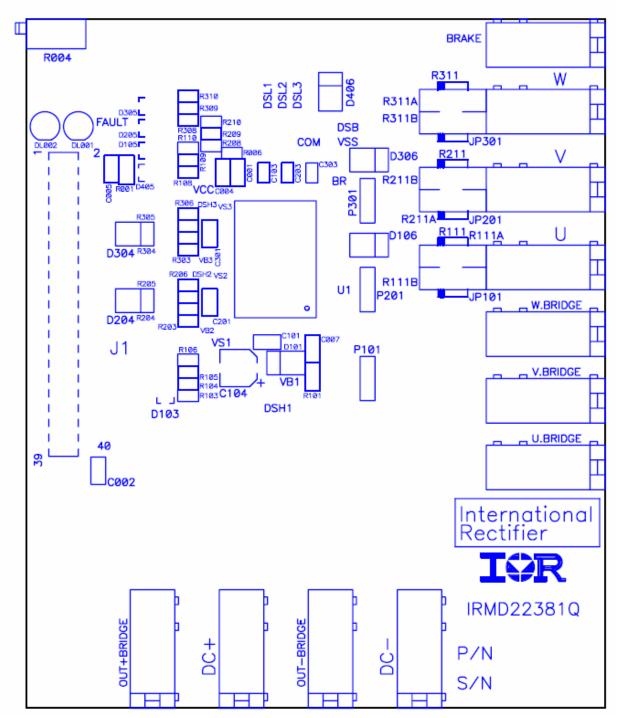

V_{CES} = 1200V

 $I_{C} = 10A, T_{C}=80^{\circ}C$

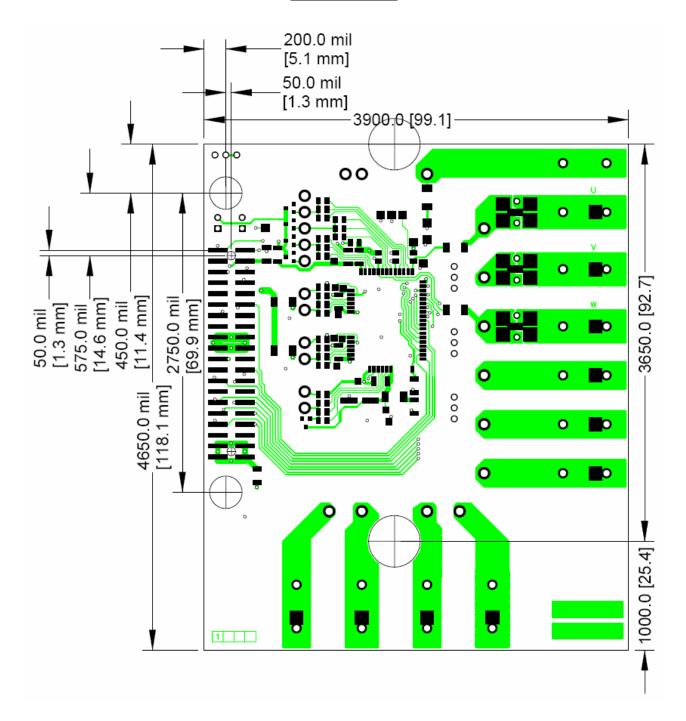

 $t_{sc} > 10 \mu s$, $T_J = 150^{\circ}C$


V_{CE(on)} typ. = 2.68V

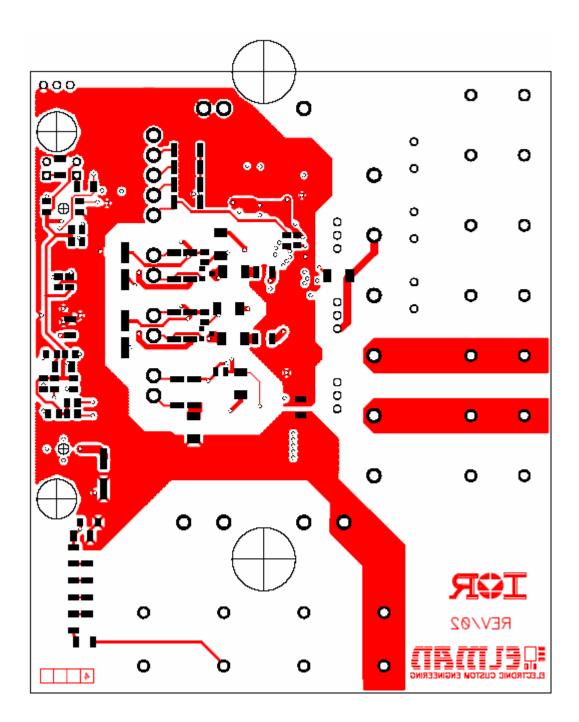
		Parameter	Min.	Тур.	Max.	Units	Conditions
nverter	BV(CES)	Collector-to-Emitter Breakdown Voltage	1200	-	-	V	V _{GE} = 0V, I _C = 500µA
IGBT	ΔV(BR)CES/ΔTJ	Temp. Coefficient of Breakdown Voltage	- 1	1.33	-	V/°C	V _{GE} = 0V, I _C = 1mA (25°C-125°C)
	V _{CE(ON)}	Collector-to-Emitter Voltage	-	2.68	3.10	V	I _C =10A V _{GE} =15V
	· CE(ON)	Constant of Linnish Consign	-	3.68			I _C =20A V _{GE} =15V
			-	3.19	3.74		I _C =10A V _{GE} =15V T _J =125°C
			-		5.40		Ic =20A VGE =15V TJ =125°C
	VGE(th)		4	-	6		V _{CE} = V _{GE} I _C =250µA
	. ,	Gate Threshold Voltage	-	9.7	-	1/00	$V_{CE} = V_{GE} + I_C = 1 \text{mA} (25^{\circ}\text{C} - 125^{\circ}\text{C})$
	∆VGE(th)	Thresold Voltage temp. coefficient			-		$V_{CE} = 0V V_{CE} = 1200V$
	ICES	Zero Gate Voltage Collector Current	-	-	100	μA	$V_{GE} = 0V V_{CE} = 1200V$ $V_{GE} = 0V V_{CE} = 1200V T_J = 125^{\circ}C$
	IGES	Onto the Environment	-	750	-		V _{GE} = ±20V
	Q _G	Gate-to-Emitter Leakage Current Total Gate Charge (turn-on)	-	- 75	200	nA	V _{GE} = 120V I _C =10A
	Q _{GE}	Gate-to-Emitter Charge (turn-on)		32	-	nC	V _{cc} =600V
	QGE	Gate-to-Collector Charge (turn-on)	-				V _{GE} =15V
	E _{ON}	Turn-On Switching Loss	-	10 0.96	-	mJ	I _C =10A V _{CC} =600V
	EOFF	Turn-Off Switching Loss	-	0.96			$V_{GF} = 15V R_{G} = 22 \Omega L = 500 \mu H$
	ETOT	Total Switching Loss	-	1.42			T1=25°C 3
	E _{ON}	Turn-On Switching Loss	-	1.44		mJ	Ic =10A Vcc =600V
	EOFF	Turn-Off Switching Loss	-	0.74			V _{GF} =15V R _G =22 Ω L =500µH
	ETOT	Total Switching Loss	-	2.18			T_=125°C 3
	t _{d(on)}	Turn-On delay time	-	86	-	ns	Ic =10A Vcc =600V
	t _r	Risetime	-	20	-	113	V _{GE} =15V R _G =22 Ω L =500µH
	t _{d(off)}	Turn-Off delay time - 110 -					
	t _f	Falltime	-	240	-	1	
	Cies	Input Capacitance	-	750	-	pF	V _{GE} =OV
	Coes	Output Capacitance - 100 -	-	_ P.	V _{cc} =30V		
	C _{res}	Reverse Transfer Capacitance	-	27	-		f =1Mhz
	RBSOA	Reverse Bias Sate Operating Area	FUL	FULL SQUARE			T _J =150°C I _C =20A
							R _G =22 Ω V _{GE} =15V to 0V
	80804	SCSOA Short Circuit Safe Operating Area	10	-	-	μs	T _i =150°C
	3030A						V _{CC} =900V V _P =1200V



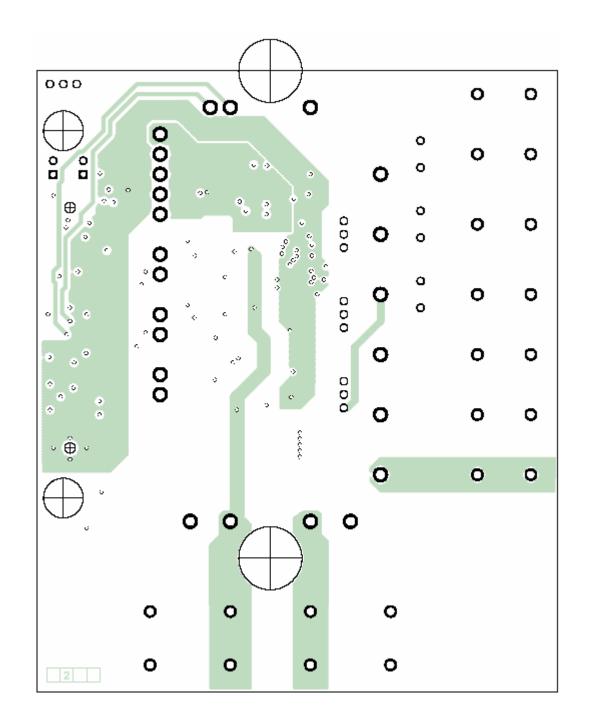
International **tor** Rectifier

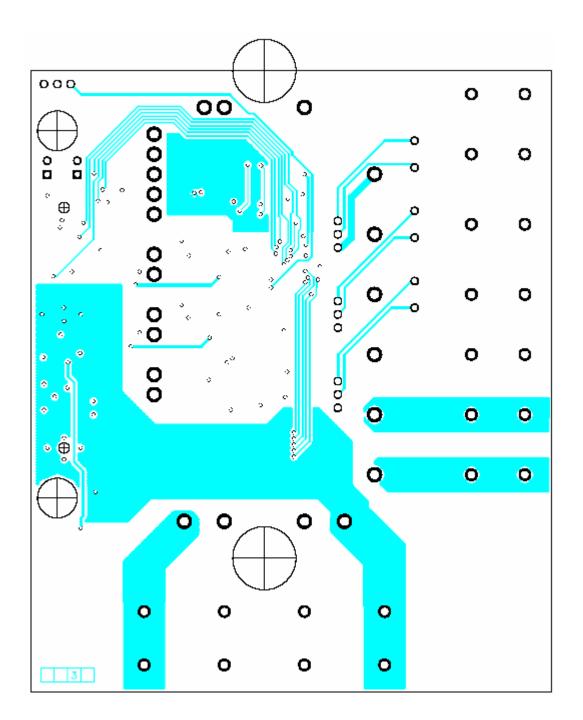


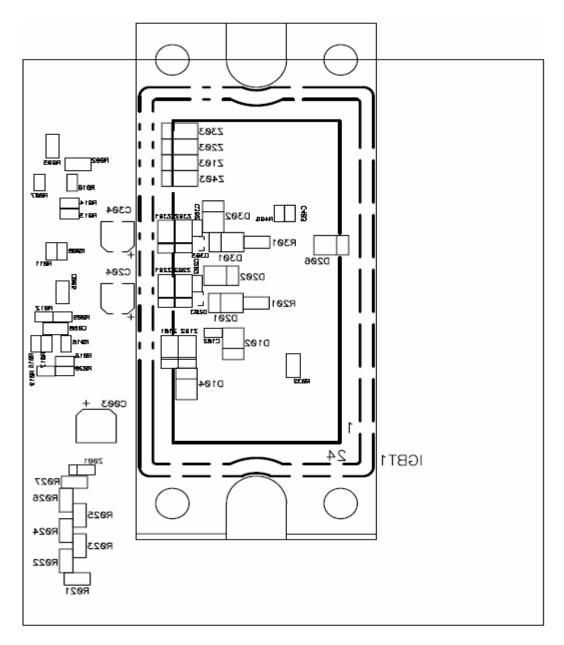
LAYOUT



TOP SILK


TOP LAYER




INT2 LAYER

BOT LAYER

BOT SILK

WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 http://www.irf.com/ Data and specifications subject to change without notice. 5/26/2005