

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IRP6VRM1

International Rectifier

Turnkey Pentium Pro¹ power supply specification

The new IRP6VRM1 offers the power supply designer a complete turnkey solution for DC/DC converters required to power next-generation microprocessors. A synchronous buck regulator topology operating at 200kHz is employed and achieves excellent efficiency with very fast load response and tight output voltage regulation.

The new FETKYTM D²Pak is used in the synchronous recirculation circuitry to reduce board space and assembly costs while actually improving circuit efficiency through reduced stray inductance. Complete performance characterization along with a detailed schematic, bill-of-materials, PCB layout and modeling are offered to reduce the customer's design time and effort.

Purpose

This is a production-ready design. It has been thoroughly tested for performance against the Intel P6 power specification, and evaluated for manufacturability by a high volume manufacturer.

This design will not be manufactured by International Rectifier. Its purpose is to simplify the design and qualification process for our customers.

Web Site

This design may be downloaded in two formats at IR's web site (http://www.irf.com). One is PDF format for on screen viewing or printing, the other is in native format.

Floppy Disk

The design is also available on floppy disk. As on our web site, the floppy version contains two formats, PDF and native format.

Demo Boards

Completed boards are available free to IR customers, and at a reasonable charge to others.

Support

E-mail Chris Davis at cdavis 1@irf.com for support of this design.

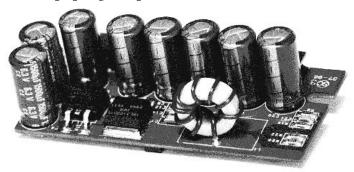


Figure 1. IRP6VRM1

Key Features

- Conforms to Intel 200Mhz P6 specification
- 12.4 ampere continuous output
- 2.0V-to-3.5V digitally selectable output
- 30A/µS transient load response capability
- Meets Pentium II power requirements
- Greater than 90% efficient
- Short circuit protected
- **FETKY**TM D²Pak synchronous rectifier
- Evaluation kit available: IRP6VRM1-EV

Contents

Specifications	2
Schematic Diagram3	3
Bill of Materials	4
Inductor Specifications	5
Assembly Options	5
Static Performance	5
Dynamic Performance	5

Copyright Restriction

This design may be used for production or evaluation purposes under the condition that all IR labeling and identification marks remain on all boards produced using this design, or as otherwise agreed to in writing by International Rectifier.

¹: A registered trademark of Intel Corporation

© International Rectifier, 1997

WWW.irf.com

Specifications

Absolute maximum ratings				(Table 1)
Parameter	Min	Max	Units	Conditions / Description
5 volt input	-	6.0	V	
12 volt input	-	15.0	V	
Continuous output current	-	12.4	Α	Pulse width > 100ms
Pulsed output current	-	14	Α	100ms pulse width, 1% duty factor
Ambient Temperature	10	60	°C	

Electrical	Input	Speci	fication	S

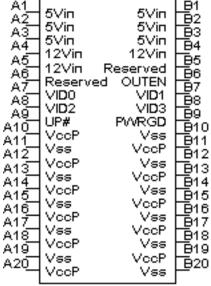
Parameter	Min	Тур	Max	Units	Conditions / Description
5 volt input (5Vin)	4.75	5.0	5.25	V	Supply meet all output specifications
5 volt input current	-	-	10	Α	All line and load conditions
12 volt input (12Vin)	11.8	12.0	13.2	V	Supply meets all output specifica-
					tions
12 volt input current	-	12.5	50	mA	All line and load conditions

Power Output Specifications (all specified line and load conditions)

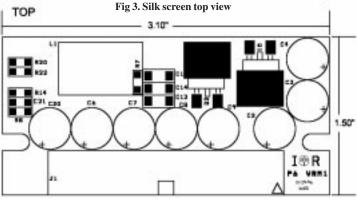
Parameter	Min	Тур	Max	Units	Conditions / Description
Voltage Range	2.0	-	3.5	V	Selected by VID[0:3]
Current	0	-	12.4	Α	
Voltage regulation	-5	-	+5	%	Of nominal VID set point. Includes
					30A/us transients from min-to-max-
					to-min load current
Ripple voltage	-1	-	+1	%	Percent of set point.
Turn on settling time	-	1.5	10	mS	Within ±10% of VID set point

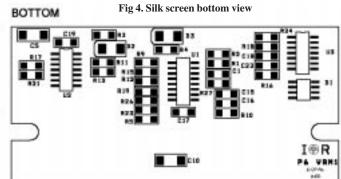
Digital Input / Output Specifications

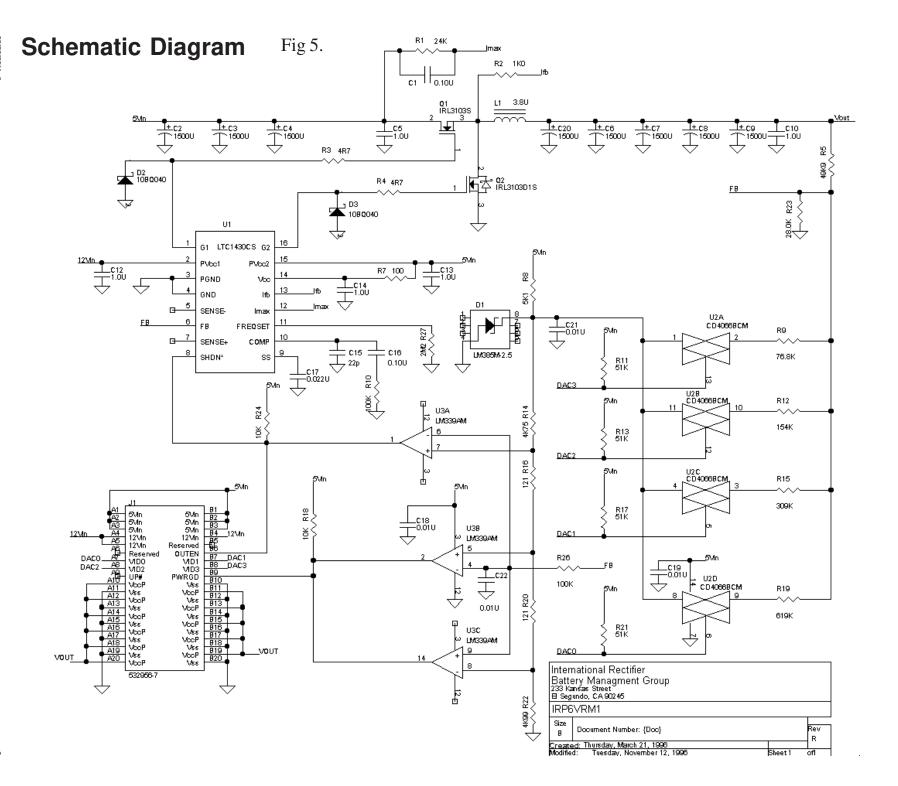
Signal	Input / Output	Conditions / Description
PWRGD	output	Open collector output. Logic 1
		output signifies that the voltage
		output of the module is within ±10%
		of the selected level
OUTEN	input	Open collector input. Logic 0
		disables the module output.
UP#	input	Open. Not required in this module
		since the module has upgrade
		capability.
VID[0:3]	input	Open collector input. Selects
		nominal output voltage as shown in
		table #2.


Output Fault Protection

Parameter	Min	Тур	Max	Units	Conditions / Description
Short circuit protection	13	17	21	Α	Limits output current during short
					circuit or overload
Over voltage protection	+10	-	+20	%	Shuts down the power supply when
					the output voltage exceeds 10%-to-
					20% above the set point


VID Codes (Table 2)


VCCP	AID3	VID2	וטוע	VIDU	Comments
2.0	1	1	1	1	No CPU
2.1	1	1	1	0	Optional
2.2	1	1	0	1	Optional
2.3	1	1	0	0	Optional
2.4	1	0	1	1	Optional
2.5	1	0	1	0	Optional
2.6	1	0	0	1	Optional
2.7	1	0	0	0	
2.8	0	1	1	1	
2.9	0	1	1	0	
3.0	0	1	0	1	
3.1	0	1	0	0	
3.2	0	0	1	1	
3.3	0	0	1	0	
3.4	0	0	0	1	
3.5	0	0	0	0	


Fig 2. Connector pin out

AMP 532956-7

* Bill of Materials

(Table #3)

Item	Qty	Reference		Description	Manufacturer	Man PN	Vendor	Vend PN
1	2	C1,C16		20% 1206 Z5U capacitor	Novacap	1206Z104M500N	Garrett	1206Z104M500N
2	8	C2,C3,C4,C6,C7,C8,C9,C20	1500U	Radial lead electrolytic capacitor	Sanyo	6MV1500GX	Sanyo	6MV1500GX
3	5	C5,C10,C12,C13,C14	1.0U	20% 1808 Z5U capacitor	Novacap	1808Z105M250N	Garrett	1808Z105M250N
4	1	C15		5% 1206 NPO capacitor	Novacap	1206N220J101N	Garrett	1206N220J101N
5	1	C17	0.022U	10% 1206 X7R capacitor	Novacap	1206B223K500N	Garrett	1206B223K500N
6	4	C18,C19,C21,C22	0.01U	10% 1206 X7R capacitor	Novacap	1206B103K500N	Garrett	1206B103K500N
- 7	1	D1	LM385M-2.5	2.5V SO8 Precision shunt referance	National Semiconductor	LM385M-2.6	Anthem	LM385M-2.5-ND
8	2	D2,D3	10BQ040	1A 40V SM schottky diode	International Rectifier	10BQ040	IR	10BQ040
9	1	J1	532956-7	40 Pin connector	AMP	532956-7	AMP	532956-7
10	1	L1	3.8U	9t of 16g on Micrometals T60-52 core	Pacific Transformer	IR001	Pacific Transformer	IR001
11	1	Q1	IRL3103S	N-Channel Power MOSFET	International Rectifier	IRL3103S	IR	IRL3103S
12	1	Q2	IRL3103D1S	N-Channel Super FETKY	International Rectifier	IRL3103D1S	IR	IRL3103D1S
13	1	R1	24K	5% 1206 Resistor	Panasonic	ERJ-8GEYJ243V	Digi-Key	P24KETR-ND
14	1	R2	1K0	5% 1206 Resistor	Panasonic	ERJ-8GEYJ102V	Digi-Key	P1.0KETR-ND
15	2	R4,R3	4R7	5% 1206 Resistor	Panasonic	ERJ-8GEYJ4R7V	Digi-Key	P4R7ETR-ND
16	1	R5	49K9	1% 1206 Resistor	Panasonic	ERJ-8ENF4992V	Digi-Key	P49.9KFTR-ND
17	1	R7	100	5% 1206 Resistor	Panasonic	ERJ-8GEYJ101V	Digi-Key	P100ETR-ND
18	1	R8	5K1	5% 1206 Resistor	Panasonic	ERJ-8GEYJ512V	Digi-Key	P5.1KETR-ND
19	1	R9	76.8K	1% 1206 Resistor	Panasonic	ERJ-8ENF7682V	Digi-Key	P76.8KFTR-ND
20	2	R26,R10	100K	5% 1206 Resistor	Panasonic	ERJ-8GEYJ104V	Digi-Key	P100KETR-ND
21	4	R11,R13,R17,R21	51K	5% 1206 Resistor	Panasonic	ERJ-8GEYJ511V	Digi-Key	P51KETR-ND
22	1	R12	154K	1% 1206 Resistor	Panasonic	ERJ-8ENF1543V	Digi-Key	P154KFTR-ND
23	1	R14	4K75	1% 1206 Resistor	Panasonic	ERJ-8ENF4751V	Digi-Key	P4.75KFTR-ND
24	1	R15	309K	1% 1206 Resistor	Panasonic	ERJ-8ENF3093V	Digi-Key	P309KFTR4ND
25	2	R16,R20	121	1% 1206 Resistor	Panasonic	ERJ-8ENF1210V	Digi-Key	P121FTR-ND
26	2	R18,R24	10K	5% 1206 Resistor	Panasonic	ERJ-8GEYJ103V	Digi-Key	P10KETR-ND
27	1	R19	619K	1% 1206 Resistor	Panasonic	ERJ-8ENF6193V	Digi-Key	P619KFTR-ND
28	1	R22	4K99	1% 1206 Resistor	Panasonic	ERJ-8ENF4991V	Digi-Key	P4.99KFTR-ND
29	1	R23	28.0K	1% 1206 Resistor	Panasonic	ERJ-8ENF2802V	Digi-Key	P28.0KFTR-ND
30	1	R27	2M2	5% 1206 Resistor	Panasonic	ERJ-8GEYJ225V	Digi-Key	P2.2METR-ND
31	1	U1	LTC1430CS	Syncronous Buck Controllor	Linear Technology	LTC1430CS	Linear Technology	LTC1430CS
32	1	U2	CD4066BCM	Quad Bilateral Switch	National Semiconductor	CD4066BCM	Anthem	CD4066BCM-ND
33	1	U3	LM339AM	Quad Comparator	National Semiconductor	LM339AM	Anthem	LM339AM

Ma	nufa	ctm	erc
IVIA	mura	ıvıuı	CIS

Novacap	(800)	227-2447
Panasonic	(800)	922-0028
National Semiconductor	(800)	272-9959
Linear Technology	(714)	453-4650
Micrometals Inc	(714)	970-9400
International Rectifier	(310)	322-3331
AMP	(800)	522-6752
Sanyo	(619)	661-6835

Distributors

Digi-Key	(800)	344-4539
Garrett	(800)	767-0081
Anthem	(714)	768-4444

PCB Fabrication

South Coast Circuits ----- (714) 966-2108

Turn Key Manufacturing

Corlund Electronics Corporation (805) 499-6877

Inductor Winding

Pacific Transformer----- (714) 779-0450

Delivery

Items used in this design were found to have production quantity lead times of under 10 weeks. Most were well under 8 weeks.

Inductor Specifications

Inductor Drawing

The specified inductor IR001, or optional IR002 can be purchased, assembled and tested (see BOM).

Fig 6. IR001

Core = Micrometals T60-52 Winding = 9 turns, 16 guage, single layer Finished OD = 0.600 MAX Finished Height = 0.400 MAX Leads extend 0.2" past OD, Strippped and tinned 0.2"

3.8UH Nominal @ 0A DC 2.5UH Nominal @ 14A DC

Batt 190 K	national Rectifier ary Management Group and thest unto, CASENS		
3.80	H, 12.4A inductor		
Size A	Document Number: (F)(0)1		Fav
int.	of Thumber, July 11, 1906 of Thumber, Donaber 10, 1906	Sheet 1	36

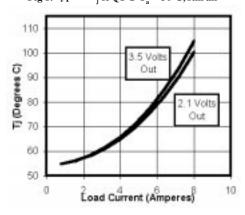
Fig 7. IR002

Care = Micrometals T60-52 Winding = 13 turns, 18 guage, single layer Finished 00 = 0.800 MAX Finished Height = 0.400 MAX Leads extend 0.2" past CO, Strippped and tinned 0.2"

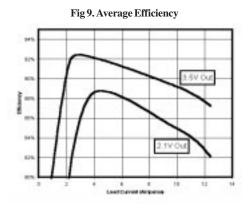
8 BUH Nominal @ BA DC 5 5UH Nominal @ 8.6A DC

Batty 230 Kg	national Rectifier ery Management Group aniae Seeut exist CA 90346			
8.00	H, B.OA inductor			
See	Societationes (9002		Fav	
240	of Theretay, Scholar ID, 1995		Sheet	77

Assembly Options


Options For 8A Output (table #4)

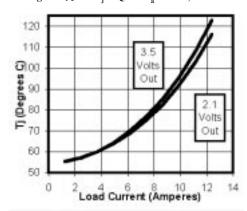
REF	From	To
C4	1500UF	Don't install
C6, C8	1500UF	Don't install
Q1	IRL3103S	IRL3303S
Q2	IRL3103D1S	IRL3303S
L1	IR001	IR002


8 Ampere Design Adaptation

Many motherboards do not require the full 12.4 ampere current output. In this case the IRP6VRM1 can be adapted to lower current levels by using the assembly options shown. These options will reduce cost by removing components and by using smaller die size MOSFETs. Substitution of a MOSFET for a FETKY will reduce efficiency somewhat, but junction temperatures will still remain well within a safe limit.

Fig 8. Typical T_i of Q1 @ $T_a = 50^{\circ}$ C, still air

Static Performance


Efficiency

Efficiency is required to be at least 80% at full load. Thanks to the very efficient IRL3103S and the **FETKY** IRL3103D1S, IRP6VRM1 exceeds the required specification by a wide margin.

Maximum Junction Temperature

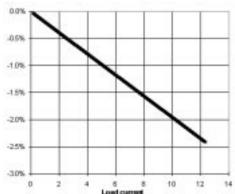

Analysis of Q1 junction temperature shows that it remains within specifications at an ambient temperature of 50°C, even in still air.

Fig 10. Typical T_i of Q1 @ $T_a = 50$ °C, still air

Dynamic Performance

Fig 11. Load Regulation, 2.1 Volts Out

Load Regulation

The output must stay within its +5% specification from no load to full load.

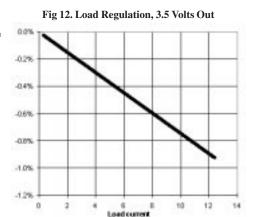
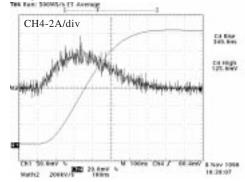



Fig 13. Transient Load Current Rise Time

Transient Load Test Conditions

The Intel specification requires the supply to stay within its ±5% specification during transient load event of 0.3A-to-12.4A in 413ns. Although most motherboards do not require this full level of performance, the IRP6VRM1 meets the full transient response specification.

Fig 14. Transient Load Current Fall time

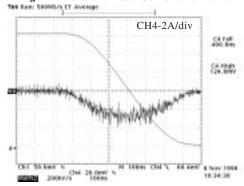
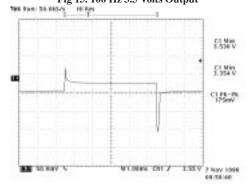
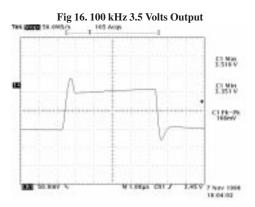
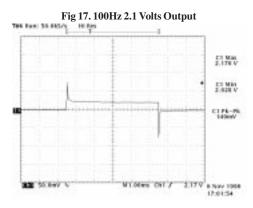



Fig 15. 100 Hz 3.5 Volts Output



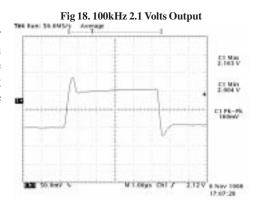
Transient Load At 3.5V Out

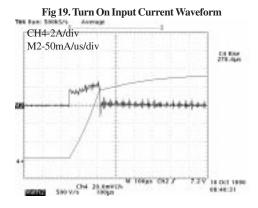
Performance at 100kHz is dominated by stray output inductance. This inductance is a combination of output capacitor ESL and board / connector inductance.


Performance at 100Hz is dominated by loop characteristics.

	Limit	100Hz	100kH2
Min	3.325	3.354	3.351
Max	3.675	3.530	3.519

WWW.irf.com 6

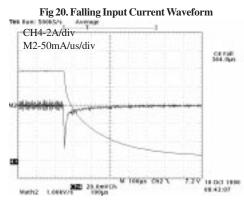

Dynamic Performance (continued)



Transient Load At 2.1V Out

Performance at 2.1 volts out is very similar to that at 3.5 volts. The notable exception is a reduction of the negative spike at the current rising edge. This is due to having more average voltage available to change the current in L1.

	Limit	100Hz	100kHz
Min	1.995	2.028	2.004
Max	2.205	2.176	2.163



Input di/dt During Transient Load

The Intel guideline (optional) specification calls for a maximum input di/dt during transient load of 0.1A/µs. The IRP6VRM1 readily meets this specification at turn on, but falls short at turn off.

This is common to all VRM boards evaluated by IR, regardless of manufacturer. It should not cause difficulties for most users, but if it is an issue for your design, add input inductance.

WWW.irf.com 7

17:56:06

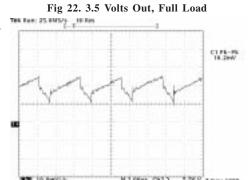
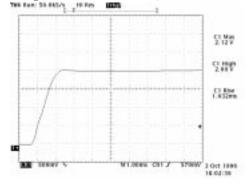
Dynamic Performance (continued)

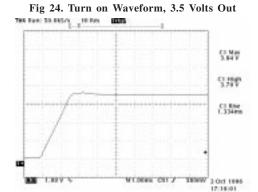
Fig 21. 2.1 Volts Out, No Load

Output Ripple Voltage

Output ripple voltage is specified as a maximum 2% p-p.

Out	Limit	Measured
2.1V	42mV	11mV
3.5V	70mV	16mV


Fig 23. Turn on Waveform, 2.1 Volts Out

Turn On Transient

Output voltage must remain within 10% of the nominal set point.

Out	Limit	Measured
2.1V	2.31	2.12
3.5V	3.85	3.84

International

Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST 171 (K&H Bldg.), 30-4 Nishi-ikebukuro 3-Chome, Toshima-ku, Tokyo Japan Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 3/97