

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

200-V Half-Bridge Driver With Shutdown Input

Features

- Gate drive supplies up to 20 V per channel
- Under voltage lockout for V_{CC1} V_{BS}
- 3.3 V, 5 V, 15 V input logic compatible
- Tolerant to negative transient voltage
- Designed for use with bootstrap power supplies
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set dead time
- · High-side output in phase with input
- Shutdown input turns off both channels
- -40 °C to 125 °C operating range
- RoHS compliant

Product Summary

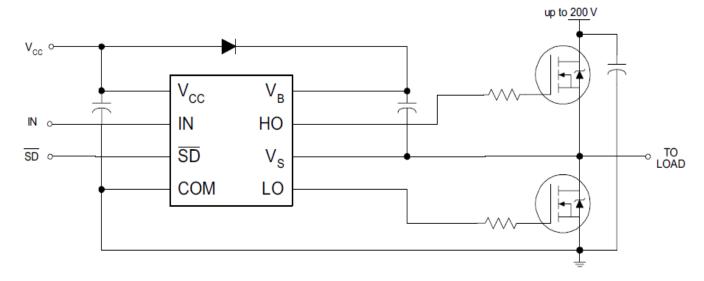
V_{OFFSET}	≤ 200 V
V _{OUT}	10 V – 20 V
I _{O+} & I _{O-} (typ.)	290 mA & 600 mA
t _{ON} & t _{OFF} (typ.)	680 ns & 150 ns
Deadtime (typ.)	520 ns

Description

The IRS2008S is a high voltage, high speed power MOSFET driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET in the high side configuration which operates up to 200 V. Propagation delays are matched to simplify the HVIC's use in high frequency applications.

Package Options

8-Lead SOIC


Typical Applications

- Appliance motor drives
- Servo drives
- Micro inverter drives
- General purpose three phase inverters

Base Best Muselson Baskson Time		Standar	d Pack	Ovdeveble Bowt Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
		Tube/Bulk	95	IRS2008SPBF	
IRS2008SPBF	2008SPBF 8-Lead SOIC		2500	IRS2008STRPBF	

Typical Connection Diagram

(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer tour Application Notes & DesignTips for proper circuit board layout.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
V _{CC}	Low side supply voltage		-0.3	25 [†]	
V_{IN}	Logic input voltage (IN & SD)		COM - 0.3	$V_{CC} + 0.3$	
V _B	High-side floating well supply volta	ige	-0.3	225	
V _S	High-side floating well supply return	rn voltage	V _B - 25	V _B + 0.3	V
V _{HO}	Floating gate drive output voltage		V _S - 0.3	V _B + 0.3	
V_{LO}	Low-side output voltage		COM - 0.3	V _{CC} + 0.3	
COM	Power ground		V _{CC} - 25	V _{CC} + 0.3	
dV _S /dt	Allowable V _S offset supply transier	nt relative to COM	_	50	V/ns
P _D	Package power dissipation @ T _A ≤+25°C	· · · · · · · · · · · · · · · · · · ·		0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	, 1 0-1 690 2010		200	ºC/W
TJ	Junction temperature	<u> </u>	150		
T _S	Storage temperature	-55	150	ºC	
T _L	Lead temperature (soldering, 10 s	econds)		300	

[†] All supplies are tested at 25V

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The offset rating is tested with supplies of $(V_{CC} - COM) = (V_B - V_S) = 15 \text{ V}$.

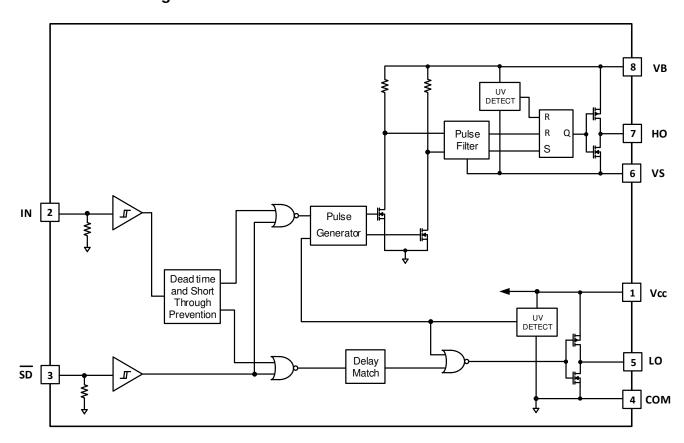
Symbol	Definition	Min	Max	Units
V_{CC}	Low-side supply voltage	10	20	
V_{IN}	Logic input voltage(IN & SD)	0	V _{CC}	
V_{B}	High-side floating well supply voltage	V _S + 10	V _S + 20	
Vs	High-side floating well supply offset voltage [†]	COM - 8 [†]	200	7 V
V _{HO}	Floating gate drive output voltage	Vs	V _B	
V_{LO}	Low-side output voltage	COM	V _{CC}	
T _A	Ambient temperature	-40	125	ºC

[†] Logic operation for VS of -8 V to 200 V. Logic state held for V_S of -8 V to $-V_{BS}$. Please refer to Design Tip DT97-3 for more details.

Static Electrical Characteristics

 $(V_{CC} - COM) = (V_B - V_S) = 15 \text{ V}.$ $T_A = 25 \text{ °C}$ unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to respective V_S and COM and are applicable to the respective output leads HO or LO. The V_{CCUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to V_S .

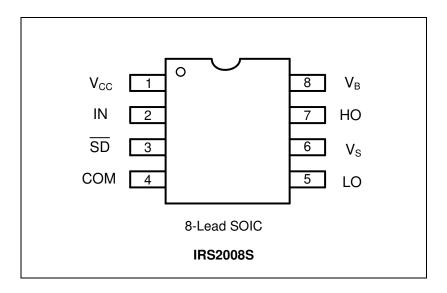
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions	
V_{BSUV^+}	V _{BS} supply under voltage positive threshold	8.0	8.9	9.8			
$V_{BSUV^{\text{-}}}$	V _{BS} supply under voltage negative threshold	7.4	8.2	9			
V_{BSUVHY}	V _{BS} supply under voltage hysteresis	_	0.7		V		
V _{CCUV+}	V _{CC} supply under voltage positive threshold	8.0	8.9	9.8	V		
V _{CCUV} -	V _{CC} supply under voltage negative threshold	7.4	8.2	9			
V _{CCUVHY}	V _{CC} supply under voltage hysteresis	_	0.7				
I_{LK}	High-side floating well offset supply leakage			50		$V_{B} = V_{S} = 200 \text{ V}$	
I _{QBS}	Quiescent V _{BS} supply current	_	45	75	μΑ	All inputs are in	
I _{QCC}	Quiescent V _{CC} supply current	_	300	520		the off state	
V _{OH}	High level output voltage drop, V _{BIAS} -V _O	_	0.05	0.2	V	I _O = 2 mA	
V_{OL}	Low level output voltage drop, V _O	_	0.02	0.1	V		
I _{O+}	Output high short circuit pulsed current	200	290	_	mA	V _O = 0 V PW ≤ 10 μs	
I _{O-}	Output low short circuit pulsed current	420	600	_	IIIA	V _O = 15 V PW ≤ 10 μs	
V _{IH}	Logic "1" (HO) & Logic "0" (LO) input voltage	2.5	_				
V_{IL}	Logic "0" (HO) & Logic "1" (LO) input voltage	_	_	0.8			
$V_{SD,TH+}$	SD input positive going threshold	2.5	_	_	V	Vcc =10 V - 20 V	
$V_{\text{SD,TH-}}$	SD input negative going threshold	_	_	0.8			
I _{IN+}	Logic "1" Input bias current	_	3	10		$V_{IN} = 5 V$	
I _{IN-}	Logic "0" Input bias current	_		5	μΑ	V _{IN} = 0 V	


Dynamic Electrical Characteristics

 $V_{CC} = V_B = 15 \text{ V}$, $V_S = COM$, $T_A = 25 \,^{\circ}\text{C}$, and $C_L = 1000 \, \text{pF}$ unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{ON}	Turn-on propagation delay	_	680	870		
t _{OFF}	Turn-off propagation delay	_	150	220		$V_S = 0 \text{ V or } 200 \text{ V}$
t _{SD}	Shutdown propagation delay	_	160	220		
t _R	Turn-on rise time	_	70	170	ns	
t _F	Turn-off fall time	_	30	90	110	
DT	Dead time, LO turn-off to HO turn-on & HO turn-off to LO turn-on	400	520	650		V _S = 0 V
MT	Delay matching time (t _{ON} , t _{OFF})	_	_	60		

Functional Block Diagram



Lead Definitions

Symbol	Description
Vcc	Low-side and logic supply voltage
V_{B}	High-side gate drive floating supply
V_S	High voltage floating supply return
IN	Logic inputs for high and low side gate driver output (HO and LO), in phase with HO
$\overline{\text{SD}}$	Logic inputs for shutdown
НО	High-side driver output
LO	Low-side driver output
COM	Low-side gate drive return

Lead Assignments

Application Information and Additional Details

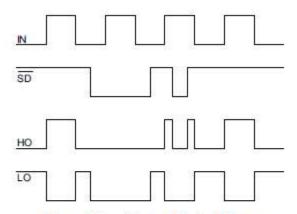


Figure 1. Input/Output Timing Diagram

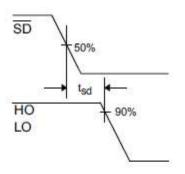


Figure 3. Shutdown Waveform Definitions

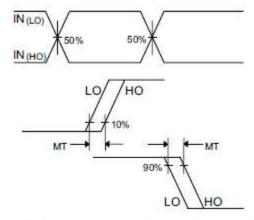


Figure 5. Delay Matching Waveform Definitions

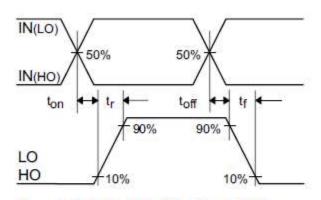


Figure 2. Switching Time Waveform Definitions

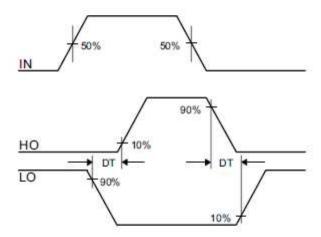


Figure 4. Deadtime Waveform Definitions

Parameters trend with different temperature and voltage bias. (Fig.6 ~ Fig.25)

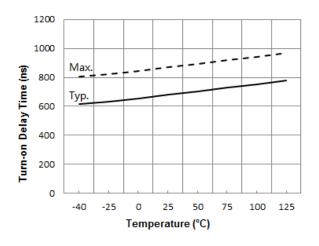


Figure 6A. Turn-On Time vs. Temperature

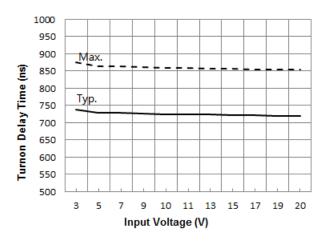


Figure 6C. Turn-On Time vs. Input Voltage

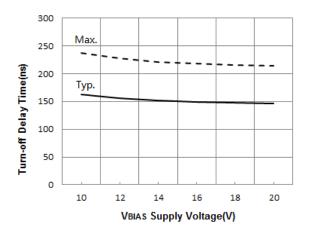


Figure 7B. Turn-Off Time vs. Supply Voltage

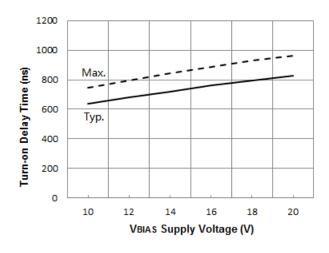


Figure 6B. Turn-On Time vs. Supply Voltage

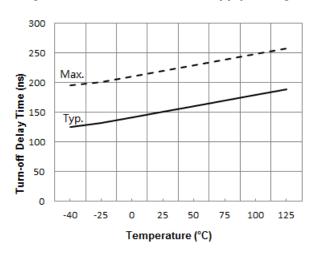


Figure 7A. Turn-Off Time vs. Temperature

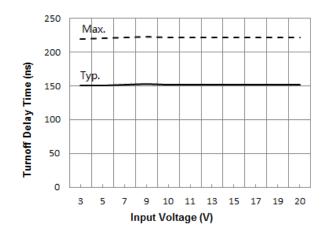


Figure 7C. Turn-Off Time vs. Input Voltage

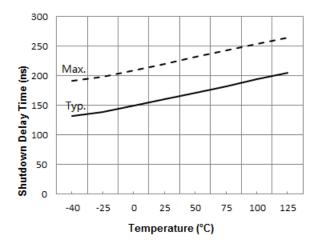


Figure 8A. Shutdown Time vs. Temperature

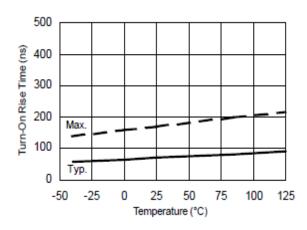


Figure 9A. Turn-On Rise Time vs. Temperature

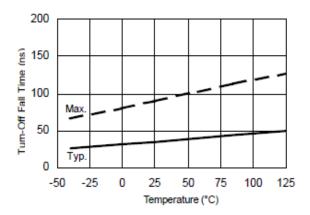


Figure 10A. Turn-Off Fall Time vs. Temperature

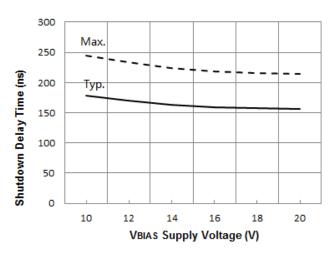


Figure 8B. Shutdown Time vs. Supply Voltage

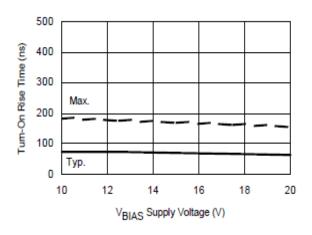


Figure 9B. Turn-On Rise Time vs. Supply Voltage

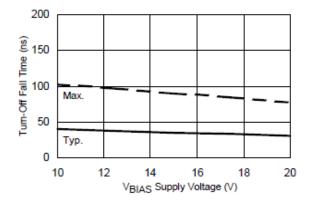


Figure 10B. Turn-Off Fall Time vs. Supply Voltage

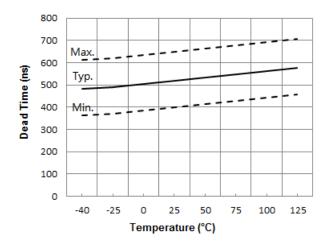


Figure 11A. Deadtime vs. Temperature

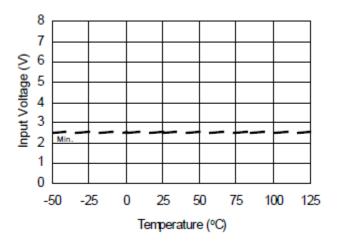


Figure 12A. Logic "1"(HO) & Logic "0"(LO) vs. Temperature

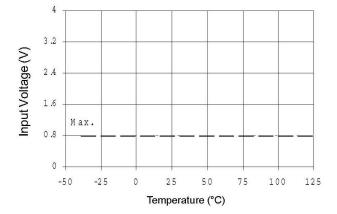


Figure 13A. Logic "0"(HO) & Logic "1"(LO) vs. Temperature

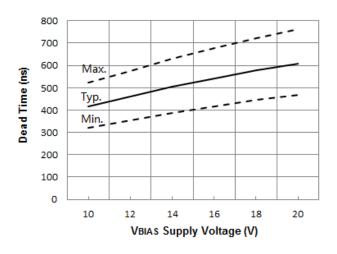


Figure 11B. Deadtime vs. Supply Voltage

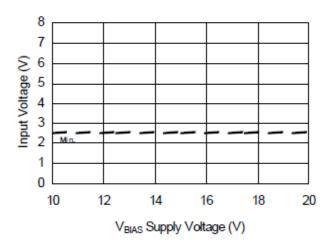


Figure 12B. Logic "1"(HO) & Logic "0"(LO) vs. Supply Voltage

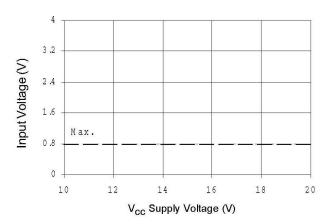


Figure 13B. Logic "0"(HO) & Logic "1"(LO) vs Supply Voltage

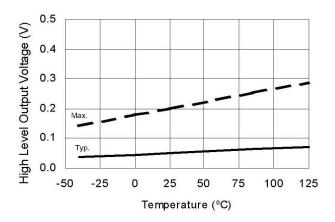


Figure 14A. High Level Output Voltage vs. Temperature

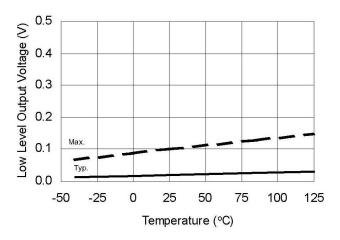


Figure 15A. Low Level Output Voltage vs. Temperature

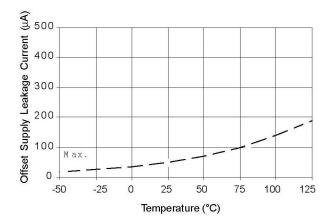


Figure 16A. Offset Supply Current vs. Temperature

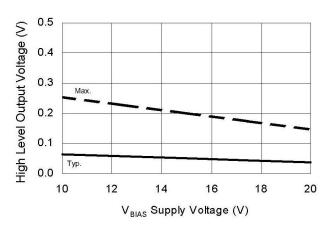


Figure 14B. High Level Output Voltage vs. Supply Voltage

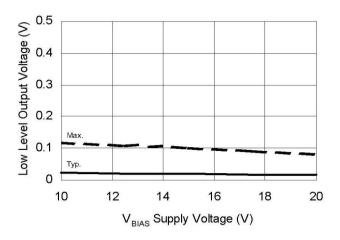


Figure 15B. Low Level Output Voltage vs. Supply Voltage

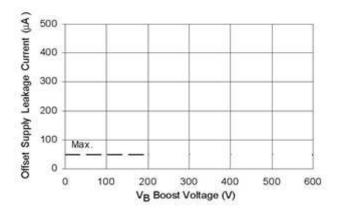
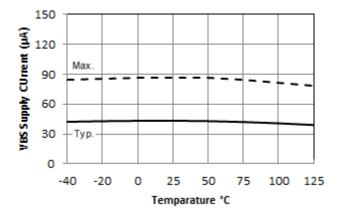



Figure 16B. Offset Supply Current vs. offset Voltage

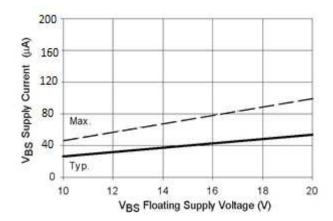
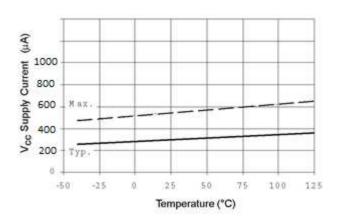



Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Supply Voltage

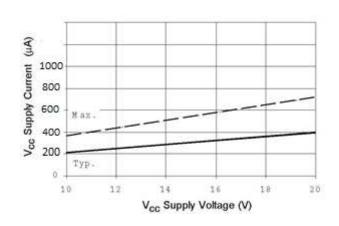
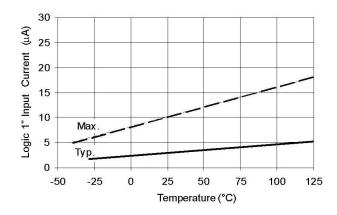



Figure 18A. V_{CC} Supply Current vs. Temperature

Figure 18B. V_{CC} Supply Current vs. Supply Voltage

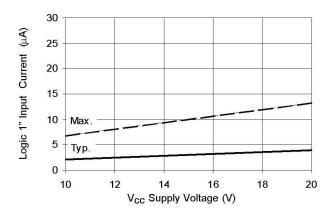


Figure 19A. Logic "1" Input Current vs. Temperature

Figure 19B. Logic "1" Input Current vs. Supply Voltage

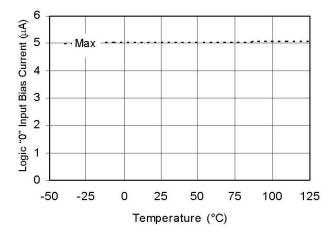


Figure 20A. Logic "0" Input Bias Current vs. Temperature

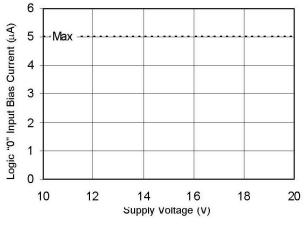


Figure 20B. Logic "0" Input Current vs. Supply Voltage

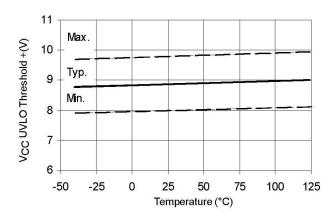


Figure 21A. $V_{CC}\V_{BS}$ Undervoltage Threshold(+) vs. Temperature

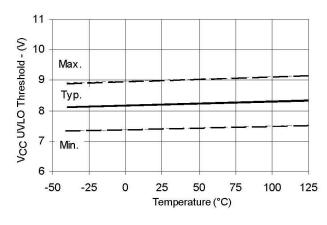


Figure 21B. $V_{CC}\V_{BS}$ Undervoltage Threshold(-) vs. Temperature

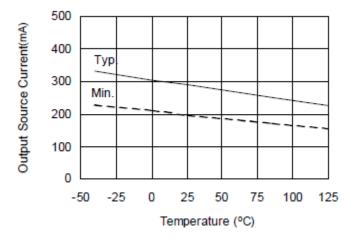


Figure 22A. Output Source Current vs. Temperature

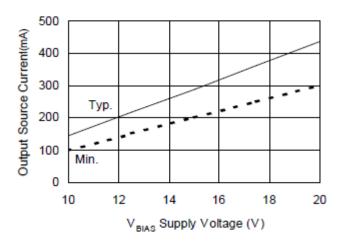
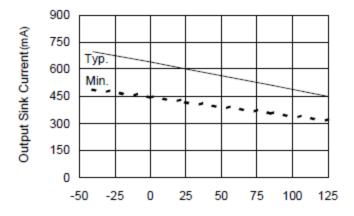



Figure 22B. Output Source Current vs. Supply Voltage

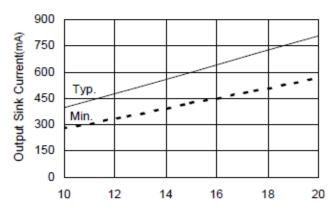


Figure 23A. Output Sink Current vs. Temperature

Figure 23B. Output Sink Current vs. Supply Voltage

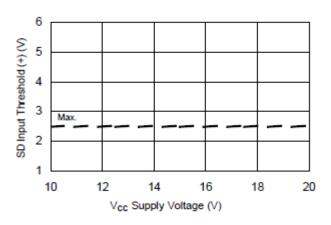
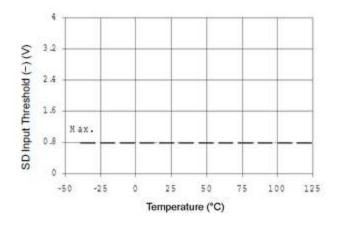



Figure 24A. SD input Positive Going Threshold(+) vs. Temperature

Figure 24B. SD input Positive Going Threshold(+) vs. Supply Voltage

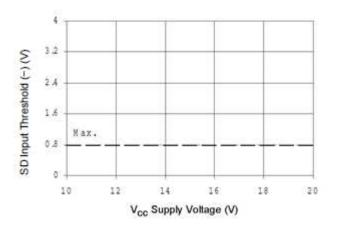
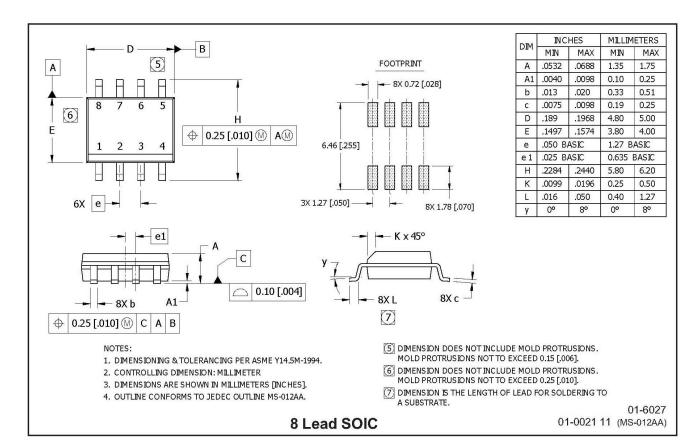
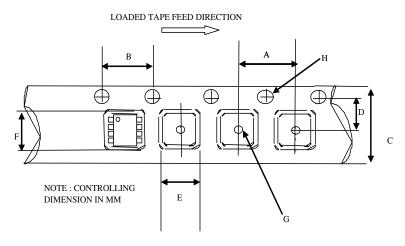
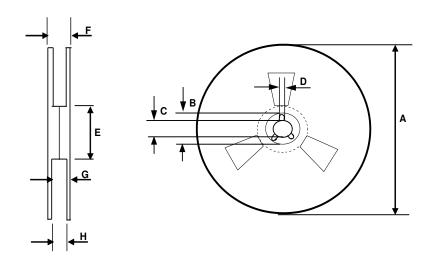



Figure 25A. SD input Negative Going Threshold(-) vs. Temperature

Figure 25B. SD input Negative Going Threshold(-) vs. Supply Voltage



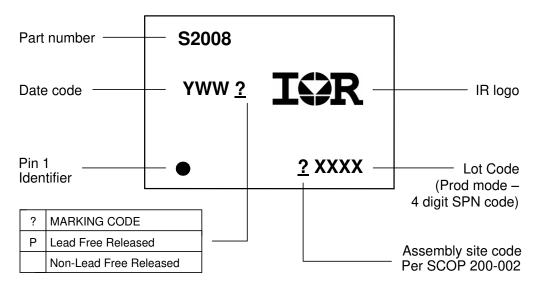
Package Details: 8-Lead SOIC



Tape and Reel Details: 8-Lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	Ma	etric	lmn	orial	
	IVIE	etric	Imperial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E F	6.30	6.50	0.248	0.255	
	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	



REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
Е	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

8-Lead SOIC8 IRS2008SPBF

Qualification Information

Qualification Level		Industrial [†]			
		Comments: This family of ICs has passed JEDEC's Industrial qualification. Consumer qualification level is granted by extension of the higher Industrial level.			
Moisture Sensitivity Level		8 Lead SOIC	MSL2 ^{††} , 260°C (per IPC/JEDEC J-STD-020)		
ESD	Human Body Model		Class 2 (per JEDEC standard JESD22-A114)		
230	Machine Model	Class A (per EIA/JEDEC standard EIA/JESD22-A115)			
IC Latch-Up Test		Class II, Level A			
To Lateri-op Test		(per JESD78)			
RoHS Compliant		Yes			

[†] Higher qualification ratings may be available should the user have such requirements. Please contact your Infineon sales representative for further information.

^{††} Higher MSL ratings may be available for the specific package types listed here. Please contact your Infineon sales representative for further information.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.