

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

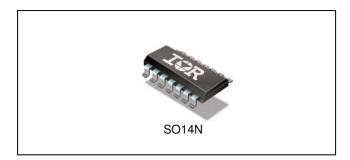
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

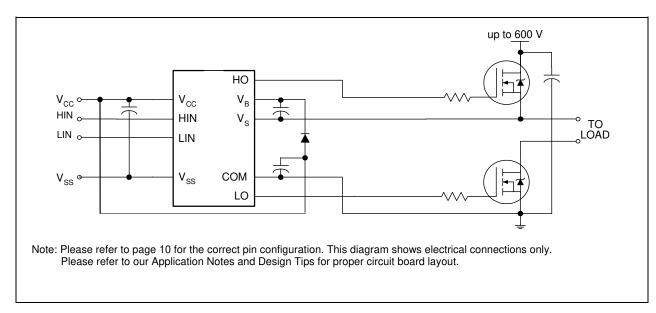
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 12, 2008

IRS210614S HIGH AND LOW SIDE DRIVER


IC Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, 5 V, and 15 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Outputs in phase with inputs
- RoHS compliant


Product Summary

Topology	Half-Bridge
V _{OFFSET}	600 V
V _{OUT}	10 V-20 V
I _{O+} & I _{O-} (typical)	290 mA & 600 mA
Ton & toff (typical)	165 ns & 165 ns

Package Types

Typical Connection Diagram

IRS210614S PRELIMINARY

Table of Contents			
Description	3		
Qualification Information	4		
Absolute Maximum Ratings	5		
Recommended Operating Conditions	6		
Static Electrical Characteristics	7		
Dynamic Electrical Characteristics			
Functional Block Diagram			
Input/Output Pin Equivalent Circuit Diagram			
Lead Definitions			
Lead Assignments			
Waveform Definitions	11		
Package Details			
Tape and Reel Details	13		
Part Marking Information	14		
Ordering Information	15		

IRS210614S

Description

The IRS21064S is a high voltage, high speed power MOSFET and IGBT driver with independent high and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.

IRS210614S

Qualification Information[†]

Guaiiioa	tion inioniation				
Qualification Level		Industrial ^{††}			
		Comments: This family of ICs has passed JEDEC's			
		Industrial qualification	. IR's Consumer qualification level is		
		granted by extension of the higher Industrial level.			
Moisture Sensitivity Level		SOIC14N	MSL2 ^{†††}		
		SOIC 14N	(per IPC/JEDEC J-STD-020)		
	Machine Madel	Class B			
ESD	Machine Model	(per JEDEC standard EIA/JESD22-A115)			
E3D	Human Bady Madal	Class 2			
Human Body Model		(per EIA/JEDEC standard JESD22-A114)			
IC Latab I	In Toot	Class 1, Level A			
IC Latch-U	op rest	(per JESD78)			
RoHS Cor	npliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

IRS210614S
PRELIMINARY

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
VB	High-side floating supply absolute voltage	-0.3	625		
Vs	High-side floating supply offset voltage	VB - 25	- 25 VB + 0.3		
VHO	High-side floating output voltage	VS - 0.3	VB + 0.3		
VCC	Low-side output voltage	-0.3	25	V	
VLO	Low-side and logic fixed supply voltage	-0.3	VCC + 0.3		
VIN	Logic input voltage	Vs -0.3	VCC + 0.3		
Vss	Logic ground	VCC -25 VCC + 0.3 V/n		V/ns	
dV _S /dt	Allowable offset supply voltage transient		50	W	
PD	Package power dissipation @ TA ≤ +25 °C		1.0	VV	
RthJA	Thermal resistance, junction to ambient		120 °C/W		
TJ	Junction temperature		150		
TS	Storage temperature	-50	150	∘C	
TL	Lead temperature (soldering, 10 seconds)		300		

IRS210614S
PRELIMINARY

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The $V_{\rm S}$ and $V_{\rm SS}$ offset rating are tested with all supplies biased at a 15 V differential..

Symbol	Definition	Min.	Max.	Units
VB	High-side floating supply absolute voltage	VS + 10	VS + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
VHO	High-side floating output voltage	Vs	VB	
VCC	Low-side output voltage		10	V
VLO	Low-side and logic fixed supply voltage	0	VCC	
VIN	Logic input voltage	Vss	VCC	
Vss	Logic ground	-5	5	
TA	Ambient temperature	-40	125	ōС

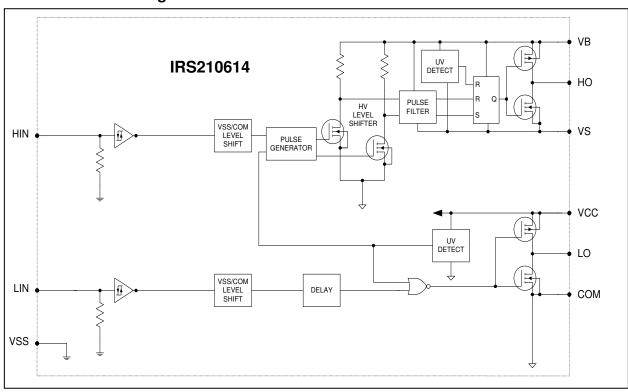
[†] Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).

IRS210614S
PRELIMINARY

Static Electrical Characteristics

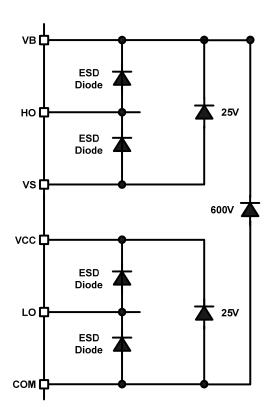
 V_{BIAS} (V_{CC} , V_{BS}) = 14 V, C_T = 1 nF and T_A = 25 °C unless otherwise specified. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO. CLO1=CLO2=CHO1=CHO2=1 nF.

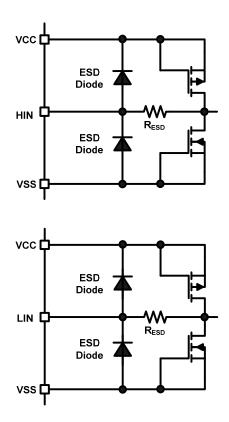
Symbol	Definition	Min	Тур	Max	Units	Test Conditions	
Low Voltage Supply Characteristics							
VIH	Logic "1" input voltage	2.5	_			VCC = 10 V to 20V	
VIL	Logic "0" input voltage		_	0.8	V	VGC = 10 V (0 20 V	
VOH	High level output voltage, V_{BIAS} - V_{O}	—	0.05	0.2			
VOL	Low level output voltage, Vo	—	0.02	0.1		$I_0 = 2 \text{ mA}$	
ILK	Offset supply leakage current		_	50		VB = VS = 600 V	
IQBS	Quiescent VBS supply current	20	75	130		VIN = 0 V or 5V	
IQCC	Quiescent VCC supply current	60	120	180	μΑ	V \(\) = \(\) \(\) \(\) \(\) \(\)	
IIN+	Logic "1" input bias current VIN = 5 V	_	5	20]		
IIN-	Logic "0" input bias current VIN = 0 V	_	_	5			
VCCUV+ VBSUV	VCC and VBS supply undervoltage positive going threshold	8.0	8.9	9.8			
VCCUV- VBSUV-	VCC and VBS supply undervoltage negative going threshold	7.4	8.2	9.0	V		
VCCUVH VBSUVH	Hysteresis	0.3	0.7				
l ₀₊	Output high short circuit pulsed current	130	290	_		VO = 0 V, $PW \le 10 \mu s$	
l ₀ -	Output low short circuit pulsed current	270	600	_	mA	VO = 15 V, PW ≤ 10 μs	


Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25 °C.

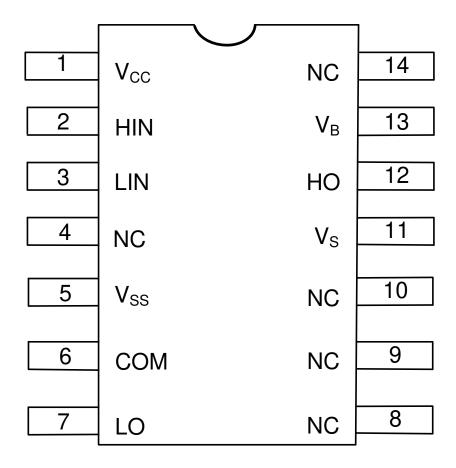
Symbol	Component	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay		165	230		$V_S = 0 V$
toff	Turn-off propagation delay		165	230		$V_S = 0 \text{ V or } 600 \text{ V}$
MT	Delay matching, HS & LS turn-on/off		0	30	ns	
tr	Turn-on rise time		100	220		V 0.V
tf	Turn-off fall time		35	80		$V_S = 0 V$


IRS210614S
PRELIMINARY


Functional Block Diagram

IRS210614S
PRELIMINARY

I/O Pin Equivalent Circuit Diagrams



IRS210614S
PRELIMINARY

Lead Definitions

Pin#	Symbol	Description			
1	V _{CC}	Low-side and logic fixed supply			
2	HIN	Logic input for high-side gate driver output (HO), in phase			
3	LIN	Logic input for low-side gate driver output (LO), in phase			
4	NC	No Connect			
5	V_{SS}	Logic ground			
6	COM	Low-side return			
7	LO	Low-side drive output			
8	NC	No Connect			
9	NC	No Connect			
10	NC	No Connect			
11	Vs	High-side floating supply return			
12	НО	High-side gate drive output			
13	V_{B}	High-side floating supply			
14	NC	No Connect			

Lead Assignments

Waveform definitions

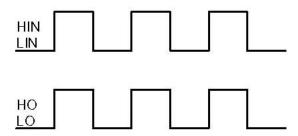


Figure 1. Input/Output Timing Diagram

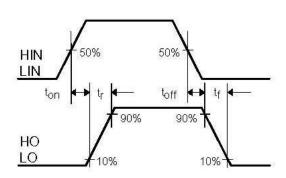


Figure 2. Switching Time Waveform Definitions

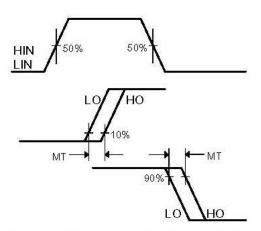
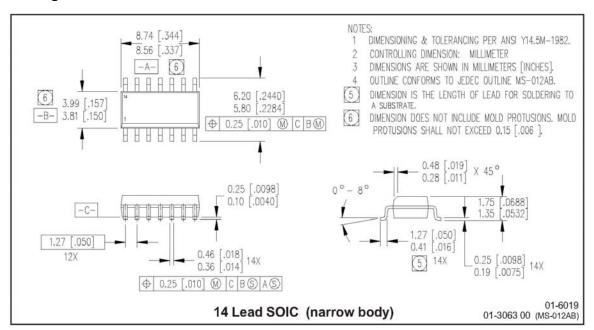
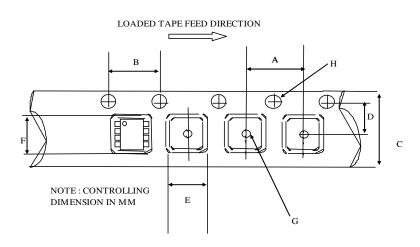
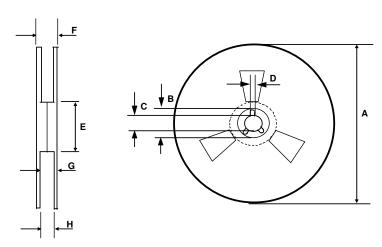



Figure 3. Delay Matching Waveform Definitions


IRS210614S

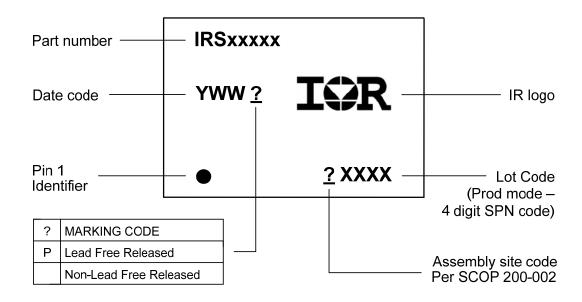
Package Details: SO14N


IRS210614S

Package Details: SOIC14N, Tape and Reel

CARRIER TAPE DIMENSION FOR 14SOICN

	Metric		Imperial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	15.70	16.30	0.618	0.641	
D	7.40	7.60	0.291	0.299	
E	6.40	6.60	0.252	0.260	
F	9.40	9.60	0.370	0.378	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	



REEL DIMENSIONS FOR 14SOICN

	Metric		Imperial		
Code	Min	Max	Min Max		
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
Н	16.40	18.40	0.645	0.724	

IRS210614S
PRELIMINARY

Part Marking Information

IRS210614S
PRELIMINARY

Ordering Information

Danie Bant Manulana	D. d T	Standard I	Pack	O a marilata Bart Namahan
Base Part Number	Package Type	Form Quantity		Complete Part Number
1000100110	SOIC14N	Tube/Bulk	55	IRS210614SPBF
IRS210614S	30101411	Tape and Reel	2500	IRS210614STRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105