

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 7, 2010 Datasheet No – PD 97420

IRS21858SPBF

High(Dual Mode) Side Driver

Features

- High side programmable ramp gate drive
- High side generic gate driver integrated using the same high side output pin
- Additional high side generic gate driver
- Under voltage lockout for VCC & VBS
- 5V input logic compatible
- Tolerant to negative transient voltage on VS
- RoHS compliant

Product Summary

Topology	PDP
V _{OFFSET}	≤ 600 V
I _{o+} & I _{o-} (typical)	290mA & 600mA
t _{ON} & t _{OFF} (typical)	160ns & 160ns

Package Options

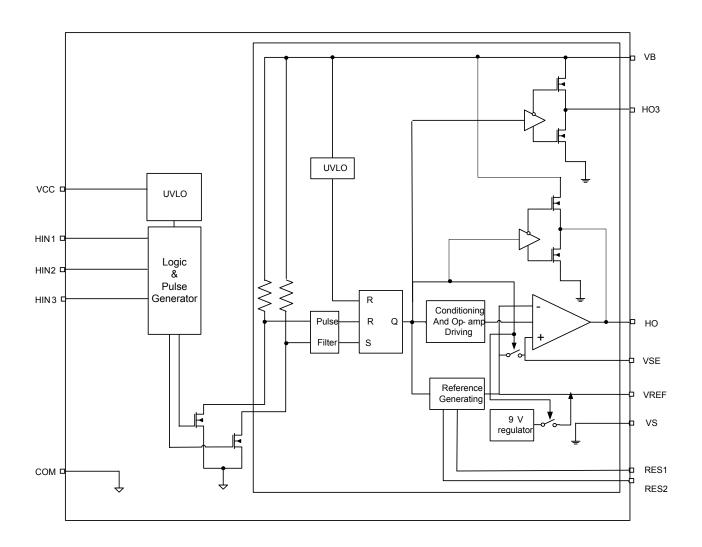
International TOR Rectifier

IRS21858SPBF

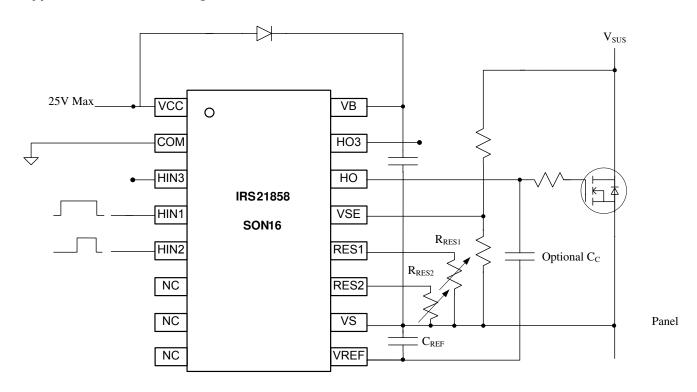
Table of Contents					
Description					
Simplified Block Diagram					
Typical Application Diagram	5				
Qualification Information	6				
Absolute Maximum Ratings	7				
Recommended Operating Conditions					
Static Electrical Characteristics					
Dynamic Electrical Characteristics					
Timing Diagram and logic truth table					
Input/Output Pin Equivalent Circuit Diagram					
Lead Definitions					
Lead Assignments					
Package Details					
Tape and Reel Details					
Part Marking Information	18				
Ordering information	19				

International

TOR Rectifier


IRS21858SPBF

Description


The IRS21858 is high voltage and programmable ramp slope control gate driver for MOSFET and IGBT with single high side dual mode driver and additional generic gate driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with 5V standard CMOS or LSTTL output. The output driver features a programmable slope control by external R and input signal. The floating channels can be used to drive an N-channel power MOSFET or IGBT in the high side configuration, which operates up to 600 volts above the COM ground.

www.irf.com © 2008 International Rectifier 3

Simplified Block Diagram

Typical Connection Diagrams

Linear Ramp driver's connection diagram (Dual slope)

International

TOR Rectifier

IRS21858SPBF

Qualification Information[†]

Qualification into	iiiatioii			
		Industrial ^{††}		
		Comments: This family of ICs has passed JEDEC's		
Qualification Level		Industrial qualification. IR's Consumer qualification		
		level is granted by extension of the higher Industrial		
		level.		
Majatura Canaitivity Laval		MSL2 ^{†††} 260°C		
Moisture Sensitivity	Levei	(per IPC/JEDEC J-STD-020)		
	Machine Model	Class B		
ESD	Macrime Model	(per JEDEC standard JESD22-A115)		
E3D	Human Bady Madal	Class 2		
Human Body Model		(per EIA/JEDEC standard EIA/JESD22-A114)		
IC Latch Un Toot		Class I , Level A		
IC Latch-Up Test		(per JESD78)		
RoHS Compliant		Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

www.irf.com © 2008 International Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages <u>referenced to COM</u>.

Symbol	Definition	Min	Max	Units
V_{CC}	Low side supply voltage	-0.3	25	V
V _{IN}	Logic input voltage (HIN1, HIN2, HIN3)	COM-0.3	VCC +0.3	V
V_{VSE} , V_{VREF}	High side inputs voltage	VS-0.3	VB+0.3	V
V_{RES1} , V_{RES2}	High side inputs voltage	VS-0.3	VB+0.3	V
V_B	High side floating well supply voltage	-0.3	625	V
Vs	High side floating well supply return voltage	VB-25	VB+0.3	V
V_{HO}	Floating gate drive output voltage	VS-0.3	VB+0.3	V
V_{HO3}	Floating gate drive output voltage	VS-0.3	VB+0.3	V
dV _S /dt	Allowable VS offset supply transient relative to COM	-	50	V/ns
P_{D}	Package Power Dissipation @ TA<=+25°C	-	1.0	W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	120	°C/W
TJ	Junction Temperature	-55	150	°C
Ts	Storage Temperature	-55	150	°C
TL	Lead temperature (Soldering, 10 seconds)	-	300	°C

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages <u>referenced to COM</u>. The offset rating are tested with supplies of (VCC-COM) = (VB-VS)=15V.

Symbol	Definition	Min	Max	Units
V_{CC}	Low side supply voltage	10	20	V
V_{IN}	HIN1, HIN2, LIN3 input voltage	COM	V_{CC}	V
V_{HO3}	High side gate drive output voltage	Vs	V_{B}	V
V_{B}	High side floating well supply voltage	V _S +10	V _S +20	V
$V_{RES1,RES2}$	RES input voltage	Vs	V_{B}	V
$V_{VREF,VSE}$	VREF and VSE input voltage	Vs	V _B -3	V
Vs	High side floating well supply offset voltage	Note2	600	V
V_{HO}	Floating gate drive output voltage	Vs	V_{B}	V
R _{RES1}	RES1 resistor	50	300	kΩ
R _{RES2}	RES2 resistor	2.5	300	kΩ
T _A	Ambient Temperature	-40	125	°C

 $[\]dagger$ V_S and V_B voltages will be tolerant to short negative transient spikes. These will be defined and specified in the future.

^{††} Logic operation for Vs of -5 to 600V. Logic state held for Vs of -5V to -V_{BS}. (Please refer to Design Tip DT97-3 for more details).

Static Electrical Characteristics (All values are target data)

(VCC-COM) = (VB-VS)=15V. TA = 25°C. The VIN, VIN TH and IIN parameters are referenced to COM. The Vo and Io parameters are referenced to VS and are applicable to the respective output leads HO, HO3. The V_{CCUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to V_S.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V _{CCUV} +	V _{CC} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V_{BSUV+}	V _{BS} supply undervoltage positive going threshold	8.0	8.9	9.8	V	
V_{BSUV}	V _{BS} supply undervoltage negative going threshold	7.4	8.2	9.0		
I _{LK}	High side floating well offset supply leakage current			50	μΑ	V _B = V _S = 600V
I_{QBS}	Quiescent VBS supply current		2.5	3.75	mA	IN1, 2 = 5V
	Quiescent VBO supply current		1.45	2.2		IN1, 2 = 0V
I _{QCC}	Quiescent VCC supply current		120	250	μΑ	IN1,2,3 = 0V or 5V
V _{IH}	Logic "1" input voltage	3.5				
VIL	Logic "0" input voltage			0.8	V	
I _{IN} +	Logic "1" input bias current		10			V _{IN} =5V
lin -	Logic "0" input bias current		0		μΑ	V _{IN} =0V
lo+_ _{HO,HO3}	Output high short circuit pulsed current		290		^	Vo=15V,Vin=5V, PW<=10us
lo _{HO,HO3}	Output low short circuit pulsed current		600		mA	Vo=0V,VIN=0V, PW<=10us
V _{OL} _ HO, HO3	Low level output voltage		30	110	mV	lo=2mA
V _{OH} _ HO, HO3	High level output voltage, Vbias-Vo		50	130	mV	lo=2mA

Dynamic Electrical Characteristics (All values are target data)

(VCC-COM)= (VB-VS)=15V. TA = 25°C. C_L = 1000pF unless otherwise specified. All parameters are reference to COM.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Internal C	perational Amplifier Characteristic					
t _{ref_ln_ramp1}	Vref Falling time of Linear ramp reference 9V to 2V		277.8		μs	$\begin{array}{c} \text{GBD*} \\ \text{C}_{\text{REF}} = 1 \text{nF, V}_{\text{SE}} \text{ open,} \\ \text{R}_{\text{RES1}} = 100 \text{K, HIN1} = 5 \text{V,} \\ \text{HIN2} = \text{com} \end{array}$
t _{ref_ln_ramp2}	Vref Falling time of Linear ramp reference 9V to 2V		14		μs	GBD* C_{REF} =1nF, V_{SE} open, R_{RES2} =4.99K, HIN1=5V, HIN2=5V
ref_ln_ramp1	Vref DC current of Linear ramp reference at 5V	22.68	25.2	27.72	uA	C_{REF} =1nF, V_{SE} open, R _{RES1} =100K, HIN1=5V, HIN2=com
l ref_ln_ramp2	Vref DC current of Linear ramp reference at 5V	450	500	550	uA	C_{REF} =1nF, V_{SE} open, R _{RES2} =4.99K, HIN1=5V, HIN2=5V
Gm	OTA transconductance		12		mS	CL_HO=1nF, R _{RES1,2} open
G _{open loop}	Open loop gain	45	60		dB	Cc =1nF, R _{RES1,2} open
BW _{SS}	Small signal bandwidth		3.5		MHz	Cc =1nF, R _{RES1,2} open
V_{OS}	Input offset voltage		20		mV	R _{RES1,2} open
HO _{SR+}	Output positive slew rate		4.5		V/µs	CL_HO=1nF, R _{RES1,2} open
CMRR	Common mode rejection ratio	50	65		dB	R _{RES1,2} open
PSRR	Power supply rejection ratio	50	65		dB	R _{RES1,2} open
Propagati	on Delay Characteristics					
t on	Turn-on delay (HO, HO3)		160	260		
t off	Turn-off delay (HO, HO3)		160	260		
t _r	Turn-on rise from 10% to 90%		60	110	ns	Gate Drive Mode C _L =1nF
t _f	Turn-off fall from 90% to 10%		20	50		
MT	Delay matching, HO & HO3 turn- on/off			50		

GBD*: Guaranteed by design

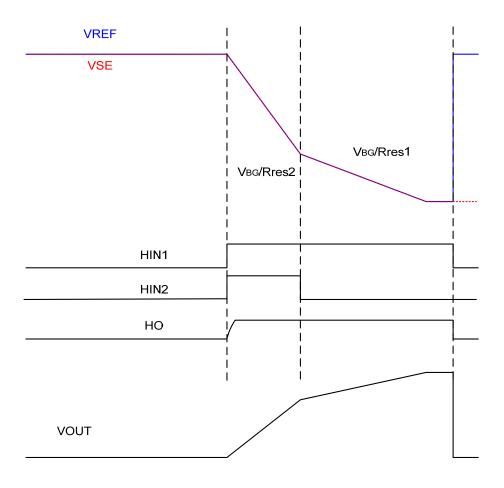


Figure 1A Input/Output Timing Diagram: Linear Ramp (Dual slope)

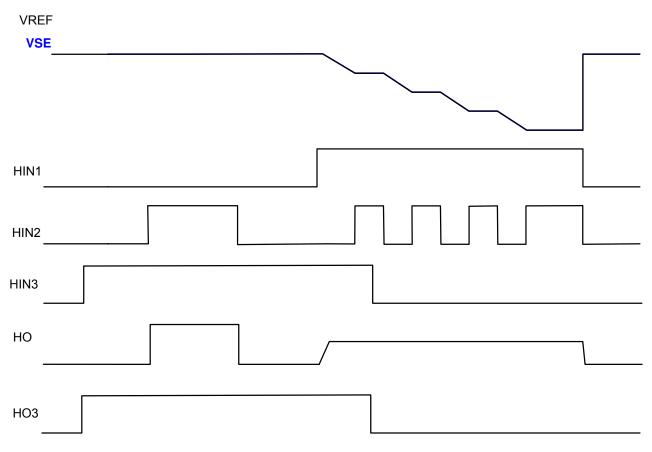


Figure 1B Input/Output Timing Diagram : HO/HO3 outputs

Logic Truth Table

	atti Tabio				
HIN1	HIN2	HIN3	OTA of HO	Gate driver of HO	Gate driver of HO3
0	0	0	High impedance (HIZ)	0	0
0	0	1	High impedance (HIZ)	0	1
0	1	0	High impedance (HIZ)	1	0
0	1	1	High impedance (HIZ)	1	1
1	0	0	Linear ramp rate controlled by RES1	High impedance (HIZ)	0
1	0	1	Linear ramp rate controlled by RES1	High impedance (HIZ)	1
1	1	0	Linear ramp rate controlled by RES2	High impedance (HIZ)	0
1	1	1	Linear ramp rate controlled by RES2	High impedance (HIZ)	1
1	Step(0/1)	1 or 0	Stepwise linear (Dual slope)	High impedance (HIZ)	1 or 0

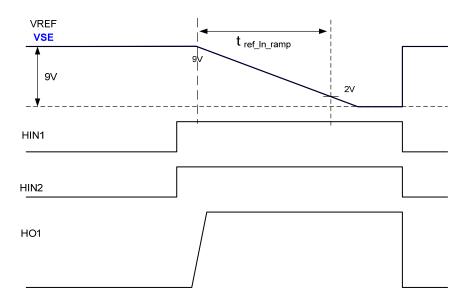


Figure 2 Timing Definitions of V_{REF}

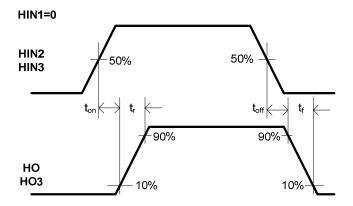
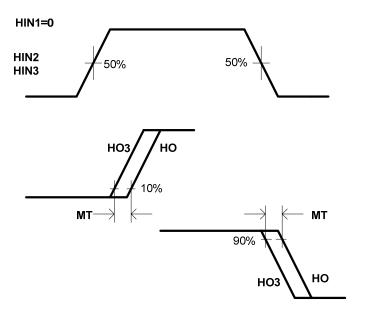
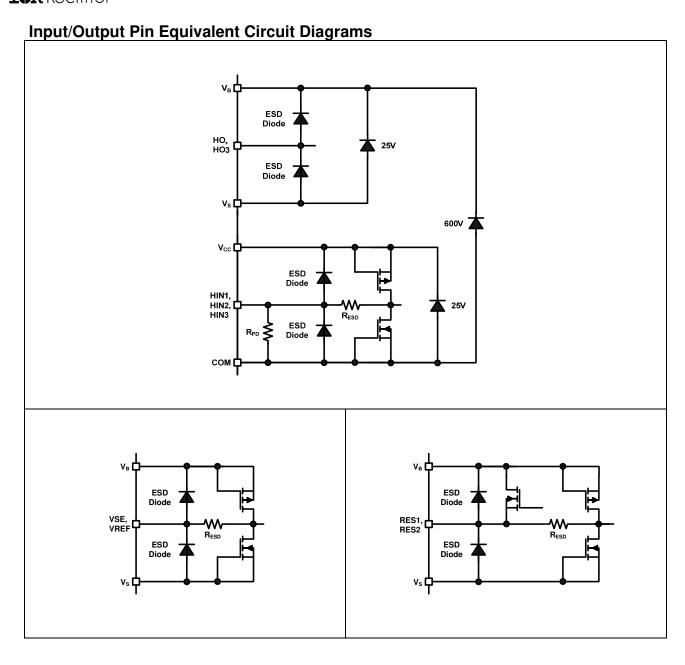
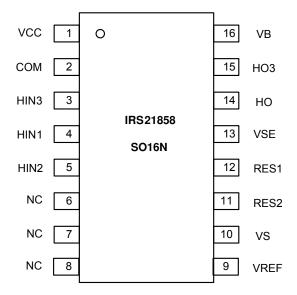
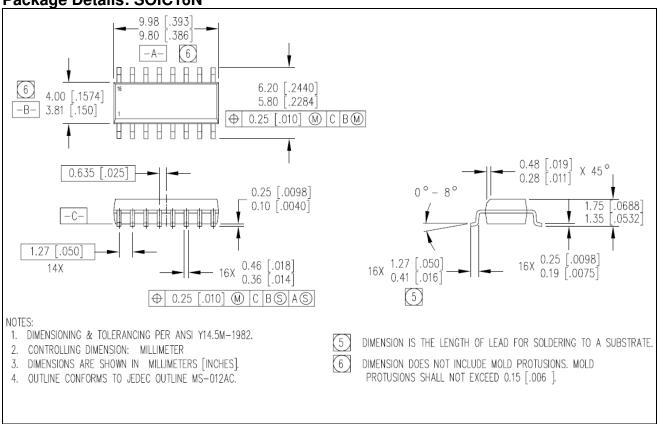
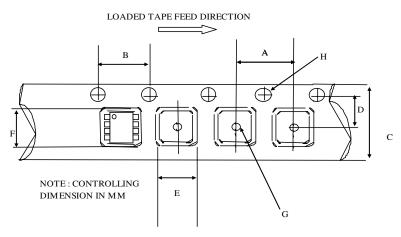




Figure 3 Switching Time Waveform Definitions of HO and HO3

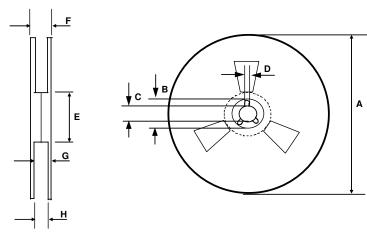

Figure 4 Delay Matching Waveform Definitions


Lead Definitions

PIN#	Symbol	Description			
1	VCC	Low side supply voltage			
2	COM	Low side supply return			
3	HIN3	Logic input for high side gate driver output			
4	HIN1	Logic input for HO ramp reference control			
5	HIN2	Logic input for high side gate driver outputs, in phase			
6	NC	No Connection			
7	NC	No Connection			
8	NC	No Connection			
9	VREF	External programmable R/C input for ramp generation			
10	VS	High side gate drive floating supply return			
11	RES1	Adjustable current source resistor input			
12	RES2	Adjustable current source resistor input			
13	VSE	Voltage sense input			
14	НО	High side gate driver output			
15	HO3	High side gate driver output			
16	VB	High side gate drive floating supply			

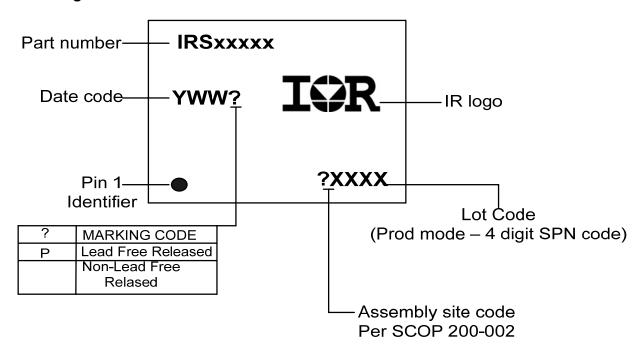

Lead Assignments

Package Details: SOIC16N



Tape and Reel Details: SOIC16N

CARRIER TAPE DIMENSION FOR 16SOICN


	Me	tric	Imperial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	15.70	16.30	0.618	0.641	
D	7.40	7.60	0.291	0.299	
E	6.40	6.60	0.252 0.26		
F	10.20	10.40	0.402	0.409	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 16SOICN

	Me	tric	Imperial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
H	16.40	18.40	0.645	0.724	

Part Marking Information

International

TOR Rectifier

IRS21858SPBF

Ordering Information

Dono Dont Number	Daalsona Toma	Standard	Pack	Osmanlata Bant Number
Base Part Number	Package Type	Form	Quantity	Complete Part Number
ID0040500	SOIC16N	Tube/Bulk	45	IRS21858SPBF
IRS21858S	30101010	Tape and Reel	2500	IRS21858STRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105