

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

January 16, 2009 Datasheet No. - PD97375

IRS21956S

Floating Input, High and Low(Dual mode) Side Driver

Features

- Low side programmable ramp gate drive
- Low side generic gate drive integrated using the same low side output pin
- High side generic gate driver
- Under voltage lockout for VDD, VCC & VBS
- Floating 5V input logic compatible
- Tolerant to negative transient voltage on Vs
- Shoot through prevention
- RoHS compliant

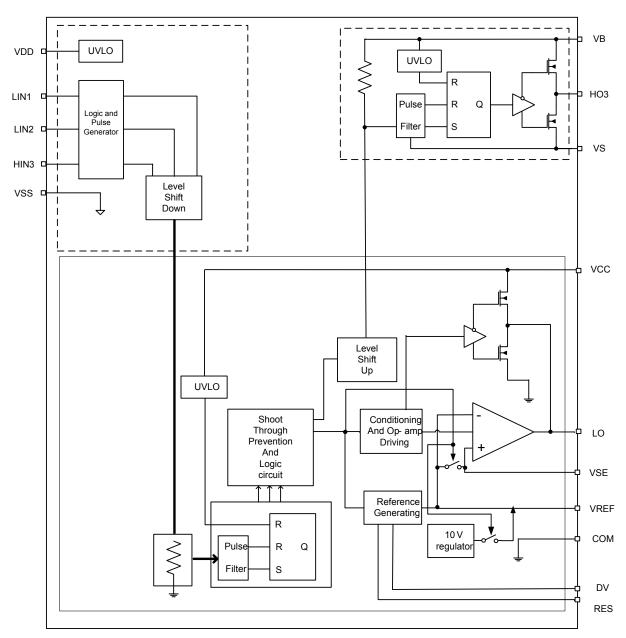
Product Summary

Topology	PDP
V _{OFFSET}	≤ 600 V
LO SR ₊	4.5V/us
I _{o+} & I _{o-} (typical)	0.5A & 0.5A
t _{ON} & t _{OFF} (typical)	300ns & 280ns

Package Options

Table of Contents	Page
Description	3
Simplified Block Diagram	4
Typical Application Diagram	5
Qualification Information	7
Absolute Maximum Ratings	8
Recommended Operating Conditions	8
Static Electrical Characteristics	9
DV / Linear (Stepwise) Mode	10
Dynamic Electrical Characteristics	10
Timing Diagram and logic truth table	11
Input/Output Pin Equivalent Circuit Diagram	16
Lead Definitions	17
Lead Assignments	18
Package Details	19
Tape and Reel Details	20
Part Marking Information	21
Ordering Information	22

Not recommended for new designs. No replacement is available International IRS21956S

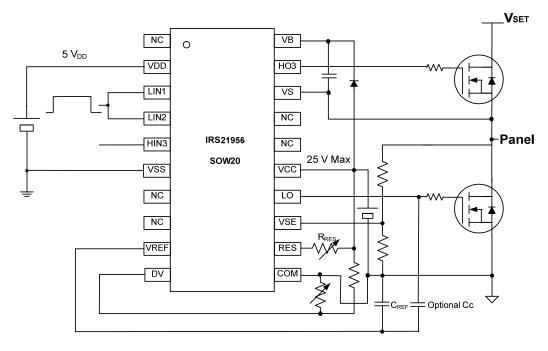

Description

The IRS21956 is high voltage and programmable ramp slope control gate driver for MOSFET and IGBT with single low side dual mode driver, high side driver and floating 5V input. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The floating logic input is compatible with standard 5V CMOS or LSTTL output. The output driver features a programmable slope control by external R/C and input signals. The floating channels can be used to drive an N-channel power MOSFET or IGBT in the high side configuration, which operates up to 600 volts above the COM ground.

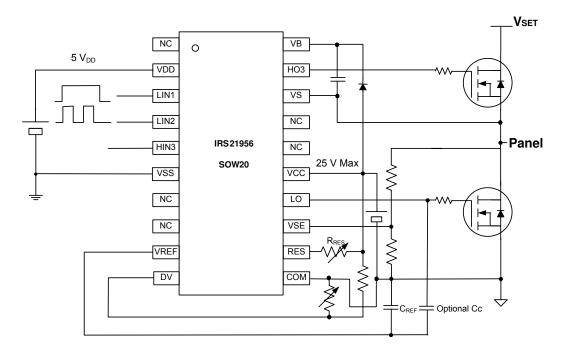
www.irf.com © 2008 International Rectifier

IRS21956S

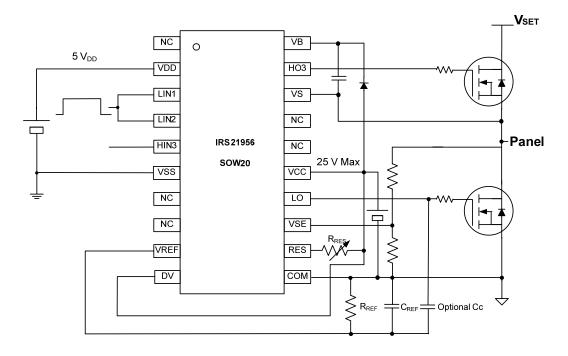
Simplified Block Diagram



www.irf.com © 2008 International Rectifier 4


IRS21956S

Typical Connection Diagram


A) Linear Ramp driver's connection diagram

B) Stepwise linear Ramp driver's connection diagram

C) Exponential Ramp driver's connection diagram

Not recommended for new designs. No replacement is available International

IOR Rectifier

IRS21956S

Qualification Information[†]

			Industrial ^{††}		
Qualification Level		Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.			
Moisture Sensitivity Level		SOIC20W	MSL3 ^{†††} 260°C (per IPC/JEDEC J-STD-020)		
	Machine Model	Class B			
ESD	Waciline Woder	(per JEDEC standard JESD22-A115)			
LSD	Human Body Model		Class 2		
	Tiuman Body Model	(per EIA/JEDEC standard EIA/JESD22-A114)			
IC Latch-Up Test		Class I, Level A			
		(per JESD78)			
RoHS Compliant			Yes		

- Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

© 2008 International Rectifier www.irf.com 7

TOR Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All

voltage parameters are absolute voltages referenced to COM.

Symbol	Definition	Min	Max	Units
V _{DD}	Floating Input Supply Voltage	-0.3	625	V
V_{SS}	Floating Input Supply Return Voltage	V _{DD} -25	V _{DD} +0.3	V
V_{IN}	Logic input voltage (LIN1,LIN2,HIN3)	V _{SS} -0.3	V _{DD} +0.3	V
V _{CC}	Low side supply voltage	-0.3	25	V
V_{DV}, V_{VREF}	Low side inputs voltage	COM-0.3	V _{CC} +0.3	V
V_{VSE}, V_{RES}	Low side inputs voltage	COM-0.3	V _{CC} +0.3	V
V_{LO}	Low side gate drive output voltage	COM-0.3	V _{CC} +0.3	V
V_{B}	High side floating well supply voltage	-0.3	625	V
Vs	High side floating well supply return voltage	V _B -25	V _B +0.3	V
V_{HO}	Floating gate drive output voltage	V _S -0.3	V _B +0.3	V
dV _{SS} /dt	Allowable V _{SS} offset supply transient relative to COM	-	50	V/ns
dV _S /dt	Allowable V _S offset supply transient relative to COM	-	50	V/ns
P _D	Package Power Dissipation @ T _A <=+25°C	-	1.0	W
R _θ JA	Thermal Resistance, Junction to Ambient	-	120	°C/W
T _J	Junction Temperature	-55	150	°C
Ts	Storage Temperature	-55	150	°C
T _L	Lead temperature (Soldering, 10 seconds)	-	300	°C

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM.

The offset rating are tested with supplies of $(V_{CC}-COM) = (V_B-V_S)=15V$.

Symbol	Definition	Min	Max	Units
V_{DD}	Floating Input Supply voltage	V _{SS} +4.5	V _{SS} +6	V
V_{SS}	Floating Input Supply offset voltage	-0.3	600	V
V_{IN}	LIN1, LIN2, HIN3 input voltage	V_{SS}	V_{DD}	V
V_{CC}	Low side supply voltage	10	20	V
V_{LO}	Low side gate drive output voltage	COM	V_{CC}	V
V_{RES}	RES input voltage	COM	V_{CC}	V
V_{DV}	DV input voltage	COM	V_{CC}	V
V _{VREF, VSE}	VREF and VSE input voltage	COM	V _{CC} -3	V
V_{B}	High side floating well supply voltage	V _S +10	V _S +20	V
Vs	High side floating well supply offset voltage	Note2††	600	V
V_{HO}	Floating gate drive output voltage	Vs	V_B	V
T _A	Ambient Temperature	-40	125	°C

 $[\]dagger$ V_S and V_B voltages will be tolerant to short negative transient spikes. These will be defined and specified in the future.

^{††} Logic operation for Vs of -5 to 600V. Logic state held for Vs of -5V to $-V_{BS}$. (Please refer to Design Tip DT97-3 for more details).

Static Electrical Characteristics

 $(V_{CC}\text{-COM}) = (V_B\text{-}V_S) = 15\text{V}$. TA = 25°C. The VIN, VIN TH and IIN parameters are referenced to V_{SS} . The Vo and Io parameters are referenced to respective VS, COM and are applicable to the respective output leads HO3, LO. The V_{CCUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to V_S . The V_{DDUV} parameters are referenced to V_{SS} .

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V _{DDUV} +	V _{DD} supply undervoltage positive going threshold		4.0			
V_{DDUV}	V _{DD} supply undervoltage negative going threshold		3.9			
V _{CCUV} +	V _{CC} supply undervoltage positive going threshold	7.8	8.7	9.6	V	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.2	8.0	8.8	V	
V_{BSUV} +	V _{BS} supply undervoltage positive going threshold	7.8	8.7	9.6		
V_{BSUV}	V _{BS} supply undervoltage negative going threshold	7.2	8.0	8.8		
I _{LK1}	High side floating well offset supply leakage current			50		V _B = V _S = 600V
I _{LK2}	High side floating well offset supply leakage current			50	uA	V _{DD} = V _{SS} = 300V
I_{QDD}	Quiescent VDD supply current		145	250	uA	IN1, 2, 3 = 0Vor 5V
I_{QBS}	Quiescent VBS supply current		65	120	uA	HIN3 = 5V or 0V
Iqcc	Quiescent VCC supply current		1	1.5	mA	LIN1, 2 = 0V, RES=130kohm
IQCC	Quiescent voo supply current		5	7	mA	LIN1, 2 = 5V, RES=130kohm
V _{IH}	Logic "1" input voltage	3.5				
VIL	Logic "0" input voltage			0.8	V	
lın+	Logic "1" input bias current		5			VIN= 5V
lin-	Logic "0" input bias current		0		uA	V _{IN} = 0V
lo+_ HO3, LO	Output high short circuit pulsed current		0.5			Vo=15V,Vin=5V, PW<=10us
lo HO3, LO	Output low short circuit pulsed current		0.5		Α	Vo=0V,Vin=0V, PW<=10us
V _{OL} _ HO3, LO	Low level output voltage		35	150	mV	lo=2mA
V _{OH} _ HO3, LO	High level output voltage, Vbias-Vo		15	80	IIIV	lo=2mA
DV exp+	Positive DV input threshold for exponential ramp		10		V	C _{REF} =1nF, V _{SE} open R _{RES} =130K

IOR Rectifier

IRS21956S

DV / Linear (Stepwise) Mode

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
VREF,	VREF. DV reference valled		0.5	0.6	V	DV=500mV, C_{REF} =1nF, V_{SE} open R_{RES} =130K,
hold	DV reference voltage	2.82	3	3.18	V	DV=3V, C_{REF} =1nF, V_{SE} open R_{RES} =130K,

Dynamic Electrical Characteristics

 $(V_{CC}\text{-COM})=(V_B\text{-}V_S)=15V$. TA = 25°C. C_L = 1000pF unless otherwise specified. All parameters are reference to COM.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Internal C	perational Amplifier Characteristic					
t ref_In_ramp	Linear ramp reference 10% to 90%	130	190	250	μs	C_{REF} =1nF, V_{SE} open R_{RES} =130K, V_{DV} =COM
Gm	OTA transconductance		12		mS	$CL_LO=1nF$, $V_{DV}=V_{CC}$, $R_{RES}=130K$, dc bias 5V
G _{open loop}	Open loop gain	45	60		dB	$Cc = 1nF$, $V_{DV} = V_{CC}$, $R_{RES} = 130K$
BW _{SS}	Small signal bandwidth		3.5		MHz	$ \begin{array}{c} \text{Cc =1nF} \ \ V_{\text{DV}} = V_{\text{CC}}, \\ R_{\text{RES}} = 130 \text{K} \end{array} $
Vos	Input offset voltage		20		mV	$V_{DV} = V_{CC}$, $R_{RES} = 130$ K
LO _{SR+}	Output positive slew rate		4.5		V/µs	$CL_LO=1nF, V_{DV}=V_{CC,}$ $R_{RES}=130K$
CMRR	Common mode rejection ratio	55	65		dB	$V_{DV} = V_{CC}$, $R_{RES} = 130$ K
PSRR	Power supply rejection ratio	55	65		dB	$V_{DV} = V_{CC}$, $R_{RES} = 130$ K
Propagat	ion Delay Characteristics					
t on	Turn-on delay (HO3, LO)		300	400		
t off	Turn-off delay (HO3, LO)		280	380	1	
t _r	Turn-on rise from 10% to 90%		25	60	ns	Gate Drive Mode
t _f	Turn-off fall from 90% to 10%		15	40		C _L =1nF
MT	Delay matching, HO3 & LO turn- on/off			50		

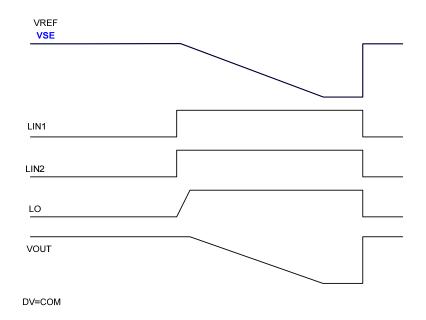


Figure 1A1 Input/Output Timing Diagram: Linear Ramp

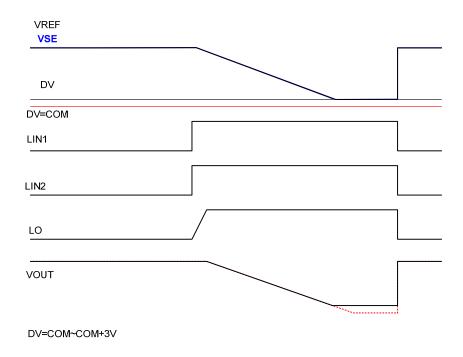


Figure 1A2 Input/Output Timing Diagram: Linear Ramp with voltage difference

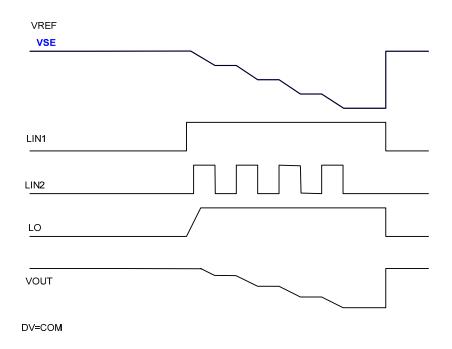


Figure 1B Input/Output Timing Diagram: Stepwise linear Ramp

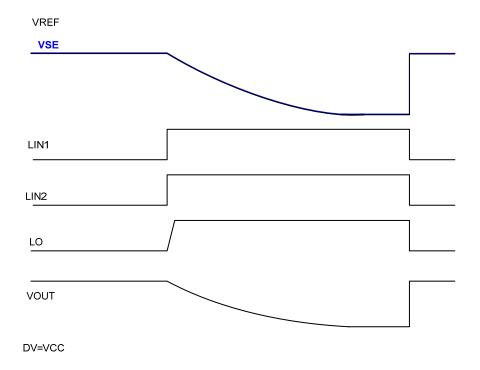


Figure 1C Input/Output Timing Diagram: Exponential Ramp

Not recommended for new designs. No replacement is available

International

TOR Rectifier

IRS21956S

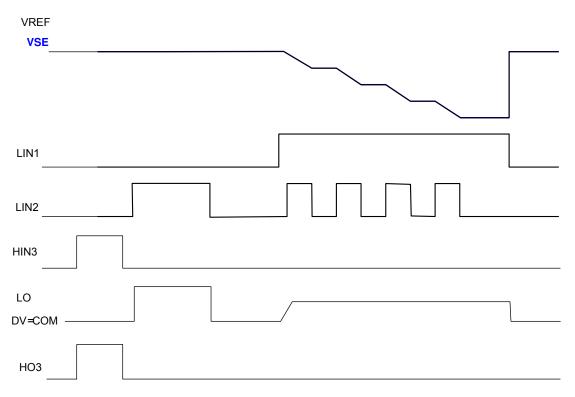


Figure 1D Input/Output Timing Diagram: LO/HO3 outputs

Logic Truth Table

LIN1	LIN2	HIN3	HO3	OTA of LO	Gate driver of LO
0	0	0	0	High impedance (HIZ)	0
0	0	1	1	High impedance (HIZ)	0
0	1	0	0	High impedance (HIZ)	1
0	1	1	0	High impedance (HIZ)	0
1	1	0	0	Linear/Exp ramp depend on DV pin	High impedance (HIZ)
1	1	1	0	High impedance (HIZ)	0
1	Step(0/1)	0	0	Stepwise linear if DV pin is COM	High impedance (HIZ)
1	Step(0/1)	1	0	High impedance (HIZ)	0

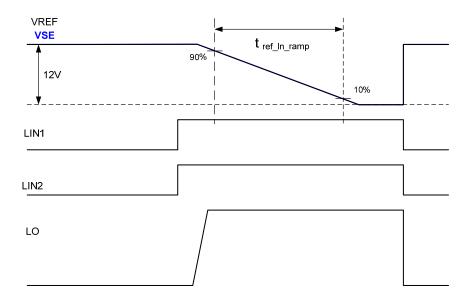


Figure 2 Timing Definitions of V_{REF}

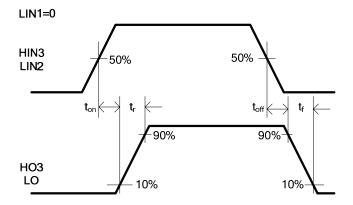
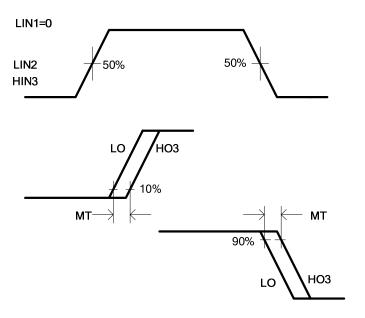



Figure 3 Switching Time Waveform Definitions of LO and HO3

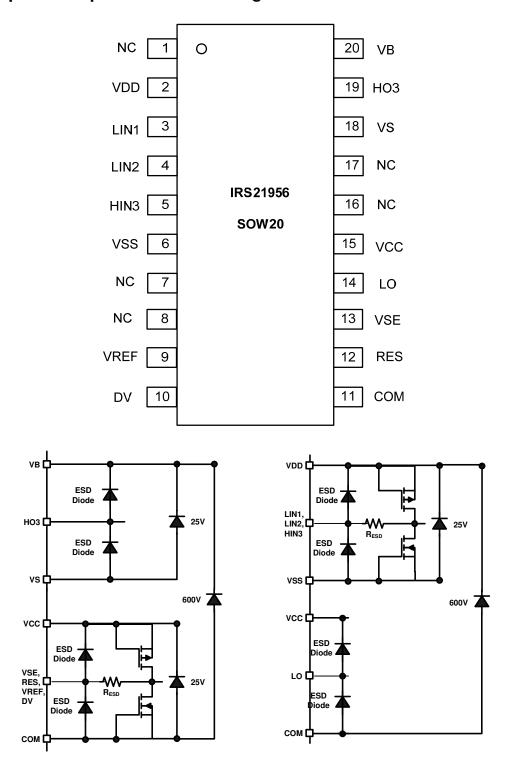
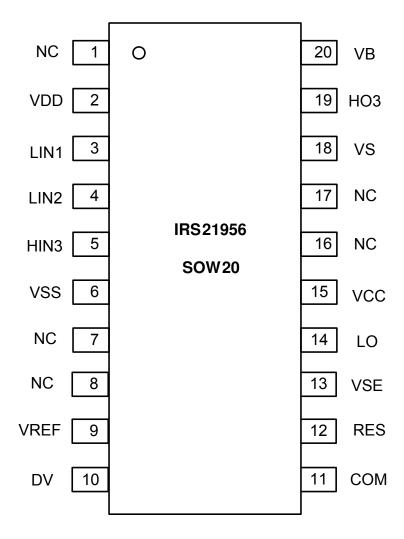

IRS21956S

Figure 4 Delay Matching Waveform Definitions

IRS21956S

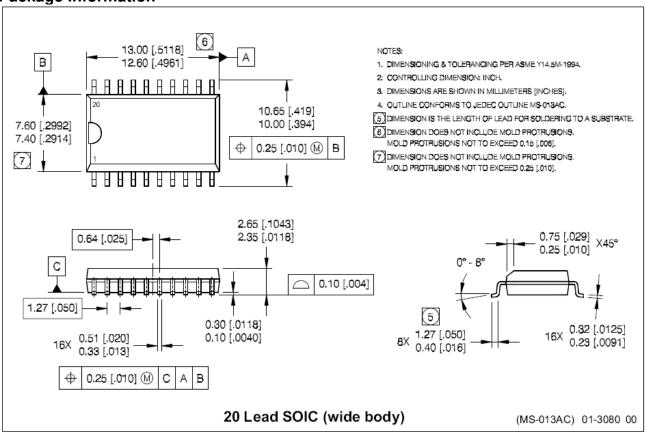
Input/Output Pin Equivalent Circuit Diagram



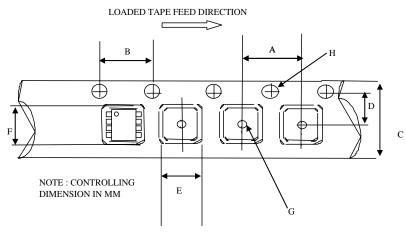
Lead Definitions

PIN#	Symbol	Description
1	NC	No Connection
2	VDD	Floating input supply voltage
3	LIN1	Logic input for LO ramp control
4	LIN2	Logic input for low side gate driver outputs, in phase
5	HIN3	Logic input for high side gate driver output
6	VSS	Floating input supply return
7	NC	No Connection
8	NC	No Connection
9	VREF	External programmable R/C input for ramp generation
10	DV	Ramp selection and programmable difference voltage (DV) input
11	COM	Low side supply return
12	RES	Adjustable current source resistor input
13	VSE	Voltage sense input
14	LO	Low side gate driver output
15	VCC	Low side supply voltage
16	NC	No Connection
17	NC	No Connection
18	VS	High side gate drive floating supply return
19	HO3	High side gate driver output
20	VB	High side gate drive floating supply

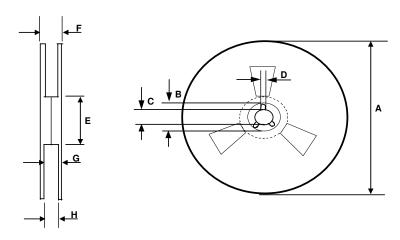
IRS21956S


Lead Assignments

Package 20 pin SOW


IRS21956S

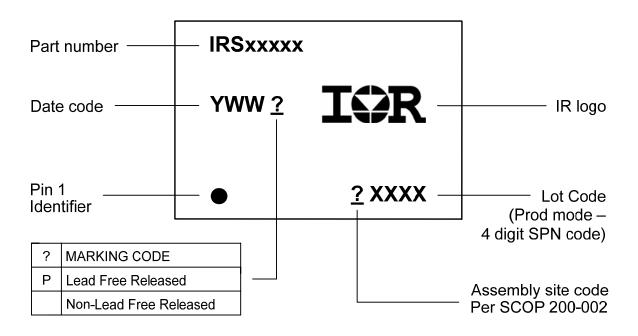
Package Information


www.irf.com © 2008 International Rectifier 19

Package Details:

CARRIER TAPE DIMENSION FOR 20SOICW

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
Α	11.90	12.10	0.468	0.476
В	3.90	4.10	0.153	0.161
С	23.70	24.30	0.933	0.956
D	11.40	11.60	0.448	0.456
E	10.80	11.00	0.425	0.433
F	13.20	13.40	0.520	0.528
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062


REEL DIMENSIONS FOR 20SOICW

	Me	tric	Imperial					
Code	Min	Max	Min	Max				
Α	329.60	330.25	12.976	13.001				
B C	20.95	21.45	0.824	0.844				
С	12.80	13.20	0.503	0.519				
D	1.95	2.45	0.767	0.096				
E F	98.00	102.00	3.858	4.015				
	n/a	30.40	n/a	1.196				
G H	26.50	29.10	1.04	1.145				
Н	24.40	26.40	0.96	1.039				

IOR Rectifier

IRS21956S

Part Marking Information

Not recommended for new designs. No replacement is available International IRS21956S

IOR Rectifier

Ordering Information

Base Part Number	Package Type	Standard Pack		Olate Bank Namehan
		Form	Quantity	Complete Part Number
IRS21956	SOIC20W	Tube/Bulk	38	IRS21956SPBF
		Tape and Reel	1000	IRS21956STRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105